【BZOJ 4353】 Play with tree

【题目链接】

           点击打开链接

【算法】

          树链剖分

          对于线段树的每个节点,记录这段区间的最小值,最小值的个数,值为0的个数,此外,还要维护两个懒惰标记

【代码】

          本题细节很多,写程序时要认真严谨!

#include<bits/stdc++.h>
using namespace std;
#define MAXN 100010
#define MAXLOG 20
const int INF = 1e9;

int i,n,m,tot,opt,u,v,c,x,y,timer,Lca,tmp;
int dep[MAXN],dfn[MAXN],head[MAXN],size[MAXN],anc[MAXN][MAXLOG],fa[MAXN],top[MAXN],son[MAXN];

struct Edge
{
        int to,nxt;
} e[MAXN<<1];

struct SegmentTree
{
        struct Node
        {
                int l,r,sum,cnt,Min,taga,tagb;
        } Tree[MAXN<<2];
        inline void build(int index,int l,int r)
        {
                int mid;
                Tree[index].l = l; Tree[index].r = r;
                Tree[index].sum = Tree[index].cnt = r - l + 1;
                Tree[index].taga = -1;
                Tree[index].tagb = 0;
                Tree[index].Min = 0;
                if (l == r) return;
                mid = (l + r) >> 1;
                build(index<<1,l,mid);
                build(index<<1|1,mid+1,r);
        }
        inline void pushdown(int index)
        {
                int l = Tree[index].l,r = Tree[index].r;
                int mid = (l + r) >> 1;
                if (Tree[index].taga != -1)
                {
                        Tree[index<<1].sum = mid - l + 1;
                        if (!Tree[index].taga) Tree[index<<1].cnt = mid - l + 1;
                        else Tree[index<<1].cnt = 0;
                        Tree[index<<1].Min = Tree[index].taga;
                        Tree[index<<1|1].sum = r - mid;
                        if (!Tree[index].taga) Tree[index<<1|1].cnt = r - mid;
                        else Tree[index<<1|1].cnt = 0;
                        Tree[index<<1|1].Min = Tree[index].taga;
                        Tree[index<<1].tagb = Tree[index<<1|1].tagb = 0;
                        Tree[index<<1].taga = Tree[index<<1|1].taga = Tree[index].taga;
                        Tree[index].taga = -1;
                }
                if (Tree[index].tagb)
                {
                        Tree[index<<1].Min += Tree[index].tagb;
                        if (!Tree[index<<1].Min) Tree[index<<1].cnt = Tree[index<<1].sum;
                        else Tree[index<<1].cnt = 0;
                        Tree[index<<1|1].Min += Tree[index].tagb;
                        if (!Tree[index<<1|1].Min) Tree[index<<1|1].cnt = Tree[index<<1|1].sum;
                        else Tree[index<<1|1].cnt = 0;
                        if (Tree[index<<1].taga != -1) Tree[index<<1].taga += Tree[index].tagb; 
                        else Tree[index<<1].tagb += Tree[index].tagb;
                        if (Tree[index<<1|1].taga != -1) Tree[index<<1|1].taga += Tree[index].tagb;
                        else Tree[index<<1|1].tagb += Tree[index].tagb;
                        Tree[index].tagb = 0;
                }
        }
        inline void update(int index)
        {
                Tree[index].Min = min(Tree[index<<1].Min,Tree[index<<1|1].Min);
                Tree[index].cnt = Tree[index<<1].cnt + Tree[index<<1|1].cnt;
                if (Tree[index<<1].Min < Tree[index<<1|1].Min) Tree[index].sum = Tree[index<<1].sum;
                else if (Tree[index<<1|1].Min < Tree[index<<1].Min) Tree[index].sum = Tree[index<<1|1].sum;
                else Tree[index].sum = Tree[index<<1].sum + Tree[index<<1|1].sum;
        }
        inline void modify(int index,int l,int r,int val)
        {
                int mid;
                if (l > r) return;
                if (Tree[index].l == l && Tree[index].r == r)
                {
                        Tree[index].Min = val;
                        Tree[index].taga = val;
                        Tree[index].tagb = 0;
                        Tree[index].sum = r - l + 1;
                        if (!val) Tree[index].cnt = r - l + 1;
                        else Tree[index].cnt = 0;
                        return;
                }
                pushdown(index);
                mid = (Tree[index].l + Tree[index].r) >> 1;
                if (mid >= r) modify(index<<1,l,r,val);
                else if (mid + 1 <= l) modify(index<<1|1,l,r,val);
                else
                {
                        modify(index<<1,l,mid,val);
                        modify(index<<1|1,mid+1,r,val);
                }
                update(index);
        }
        inline void add(int index,int l,int r,int val)
        {
                int mid;
                if (l > r) return;
                if (Tree[index].l == l && Tree[index].r == r)
                {
                        Tree[index].Min += val;
                        if (Tree[index].taga != -1) Tree[index].taga += val;
                        else Tree[index].tagb += val;
                        if (!Tree[index].Min) Tree[index].cnt = Tree[index].sum;
                        else Tree[index].cnt = 0;
                        return;
                }
                pushdown(index);
                mid = (Tree[index].l + Tree[index].r) >> 1;
                if (mid >= r) add(index<<1,l,r,val);
                else if (mid + 1 <= l) add(index<<1|1,l,r,val);
                else
                {
                        add(index<<1,l,mid,val);
                        add(index<<1|1,mid+1,r,val);
                }
                update(index);
        }
        inline int query_min(int index,int l,int r)
        {
                int mid;
                if (l > r) return INF;
                if (Tree[index].l == l && Tree[index].r == r) return Tree[index].Min;
                pushdown(index);
                mid = (Tree[index].l + Tree[index].r) >> 1;
                if (mid >= r) return query_min(index<<1,l,r);
                else if (mid + 1 <= l) return query_min(index<<1|1,l,r);
                else return min(query_min(index<<1,l,mid),query_min(index<<1|1,mid+1,r));
        }
        inline int query()
        {
                return Tree[1].cnt - 1;
        }
} T;
inline void add(int u,int v)
{
        tot++;
        e[tot] = (Edge){v,head[u]};
        head[u] = tot;
}
inline void dfs1(int u)
{
        int i,v;
        size[u] = 1;
        anc[u][0] = fa[u];
        for (i = 1; i < MAXLOG; i++)
        {
                if (dep[u] < (1 << i)) break;
                anc[u][i] = anc[anc[u][i-1]][i-1];
        }
        for (i = head[u]; i; i = e[i].nxt)
        {
                v = e[i].to;
                if (fa[u] != v)
                {
                        dep[v] = dep[u] + 1;
                        fa[v] = u;
                        dfs1(v);
                        size[u] += size[v];
                        if (size[v] > size[son[u]]) son[u] = v;    
                }    
        }        
}
inline void dfs2(int u,int tp)
{    
        int i,v;
        dfn[u] = ++timer;
        top[u] = tp;
        if (son[u]) dfs2(son[u],tp);
        for (i = head[u]; i; i = e[i].nxt)
        {
                v = e[i].to;
                if (fa[u] != v && son[u] != v) dfs2(v,v);
        }
}
inline void solve1(int u,int v,int c)
{
        int tu = top[u],tv = top[v];
        while (tu != tv)
        {
                T.modify(1,dfn[tv],dfn[v],c);
                v = fa[tv]; tv = top[v];
        }
        T.modify(1,dfn[u]+1,dfn[v],c);
}
inline void solve2(int u,int v,int c)
{
        int tu = top[u],tv = top[v];
        while (tu != tv)
        {
                T.add(1,dfn[tv],dfn[v],c);
                v = fa[tv]; tv = top[v];
        }
        T.add(1,dfn[u]+1,dfn[v],c);
}
inline int query_min(int u,int v)
{
        int tu = top[u],tv = top[v],ans = INF;
        while (tu != tv)
        {
                ans = min(ans,T.query_min(1,dfn[tv],dfn[v]));
                v = fa[tv]; tv = top[v];
        }
        ans = min(ans,T.query_min(1,dfn[u]+1,dfn[v]));
        return ans;
}
inline int lca(int x,int y)
{
        int i,t;
        if (dep[x] > dep[y]) swap(x,y);
        t = dep[y] - dep[x];
        for (i = 0; i < MAXLOG; i++)
        {
                if (t & (1 << i))
                        y = anc[y][i];
        }
        if (x == y) return x;
        for (i = MAXLOG - 1; i >= 0; i--)
        {
                if (anc[x][i] != anc[y][i])
                {
                        x = anc[x][i];
                        y = anc[y][i];
                }
        }
        return fa[x];
}
template <typename T> inline void read(T &x)  
{  
    int f = 1; x = 0;  
    char c = getchar();  
    for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }  
    for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';  
    x *= f;  
}  
template <typename T> inline void write(T x)  
{  
    if (x < 0)  
    {  
        putchar('-');  
        x = -x;  
    }  
    if (x > 9) write(x/10);  
    putchar(x%10+'0');  
}  
template <typename T> inline void writeln(T x)  
{  
    write(x);  
    puts("");  
}  

int main() {
        
        read(n); read(m);
        for (i = 1; i < n; i++)
        {
                read(x); read(y);
                add(x,y);
                add(y,x);
        }
        dfs1(1);
        dfs2(1,1);
        T.build(1,1,timer);
        while (m--)
        {
                read(opt);
                if (opt == 1)
                {
                        read(u); read(v); read(c);
                        Lca = lca(u,v);
                        solve1(Lca,u,c);
                        solve1(Lca,v,c);
                } else
                {
                        read(u); read(v); read(c);
                        Lca = lca(u,v);
                        tmp = min(query_min(Lca,u),query_min(Lca,v));
                        if (tmp + c < 0) c = -tmp;
                        solve2(Lca,u,c);
                        solve2(Lca,v,c);
                } 
                writeln(T.query());
        }
        
        return 0;
    
}

 

posted @ 2018-06-01 22:57  evenbao  阅读(198)  评论(0编辑  收藏  举报