[SDOI 2015] 星际战争
[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=3993
[算法]
首先发现问题具有单调性 , 不妨二分答案mid
考虑网络流 :
将源点向每个"激光武器”连一条流量为mid * Bi的边
将每个“激光武器”向每个其可以攻击的“机器人”连一条流量为正无穷的边
将每个“机器人”向汇点连一条流量为Ai的边
判断是否满流即可
时间复杂度 : O(dinic(N + M , M ^ 2) * logV)
[代码]
为避免精度误差 , 可以在整数域上进行二分 , 最后以浮点数形式输出
#include<bits/stdc++.h> using namespace std; #define N 510 typedef long long ll; typedef long double ld; typedef unsigned long long ull; const ll inf = 1e15; struct edge { int to; ll w; int nxt; } e[N * N * 5]; int n , m , tot , S , T; int dep[N] , head[N] , g[N][N]; ll a[N] , b[N]; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); } template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); } template <typename T> inline void read(T &x) { T f = 1; x = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0'; x *= f; } inline void addedge(int u , int v , ll w) { ++tot; e[tot] = (edge){v , w , head[u]}; head[u] = tot; ++tot; e[tot] = (edge){u , 0 , head[v]}; head[v] = tot; } inline bool bfs() { queue< int > q; for (int i = 1; i <= T; ++i) dep[i] = -1; q.push(S); dep[S] = 1; while (!q.empty()) { int cur = q.front(); q.pop(); for (int i = head[cur]; i; i = e[i].nxt) { int v = e[i].to; ll w = e[i].w; if (w > 0 && dep[v] == -1) { dep[v] = dep[cur] + 1; q.push(v); if (v == T) return true; } } } return false; } inline ll dinic(int u , ll flow) { ll k , rest = flow; if (u == T) return flow; for (int i = head[u]; i && rest; i = e[i].nxt) { int v = e[i].to; ll w = e[i].w; if (dep[v] == dep[u] + 1 && w) { k = dinic(v , min(w , rest)); e[i].w -= k; e[i ^ 1].w += k; if (!k) dep[v] = 0; rest -= k; } } return flow - rest; } inline bool check(ll mid) { S = n + m + 1 , T = S + 1; for (int i = 1; i <= T; ++i) head[i] = 0; for (int i = 1; i <= tot; ++i) e[i].nxt = 0; tot = 1; for (int i = 1; i <= m; ++i) addedge(S , i , b[i] * mid); for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (g[i][j]) addedge(i , j + m , inf); } } ll sum = 0; for (int i = 1; i <= n; ++i) { addedge(i + m , T , a[i]); sum += a[i]; } ll res = 0; while (bfs()) { while (double flow = dinic(S , inf)) res += flow; } return res == sum; } int main() { scanf("%d%d" , &n , &m); for (int i = 1; i <= n; ++i) { scanf("%lld" , &a[i]); a[i] *= 1000; } for (int i = 1; i <= m; ++i) scanf("%lld" , &b[i]); for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { scanf("%d" , &g[i][j]); } } ll l = 0 , r = inf , ans = 0; while (l <= r) { int mid = (l + r) >> 1; if (check(mid)) { ans = mid; r = mid - 1; } else l = mid + 1; } printf("%.6lf\n" , (double)(ans / 1000.0)); return 0; }