[FJOI 2016] 神秘数
[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=4408
[算法]
首先考虑一组询问怎样做 :
将数组按升序排序 , 假设我们现在可以表示出[1 , x]范围的数 , 加入一个数Ai , 则Ai必须满足 :
Ai <= x + 1
若不满足 , 答案即为(x + 1)
如何处理多组询问呢?
考虑建立可持久化线段树 , 维护一段区间中小于或等于某个数的数的权值和
设当前答案为ans
在可持久化线段树中查询区间[l , r]中 <= ans的数的和x
若x >= ans , 则ans = x + 1
否则答案为(ans + 1)
时间复杂度 : O(NlogN ^ 2)
[代码]
#include<bits/stdc++.h> using namespace std; typedef long long ll; typedef long double ld; typedef unsigned long long ull; const int N = 1e5 + 10; int n , m; int a[N] , rt[N]; struct Presitent_Segment_Tree { int sz; int lc[N * 40] , rc[N * 40] , sum[N * 40]; Presitent_Segment_Tree() { sz = 0; } inline void modify(int &now , int old , int l , int r , int x , int value) { now = ++sz; lc[now] = lc[old] , rc[now] = rc[old]; sum[now] = sum[old] + value; if (l == r) return; int mid = (l + r) >> 1; if (mid >= x) modify(lc[now] , lc[old] , l , mid , x , value); else modify(rc[now] , rc[old] , mid + 1 , r , x , value); } inline int query(int rt1 , int rt2 , int l , int r , int ql , int qr) { if (l == ql && r == qr) return sum[rt1] - sum[rt2]; int mid = (l + r) >> 1; if (mid >= qr) return query(lc[rt1] , lc[rt2] , l , mid , ql , qr); else if (mid + 1 <= ql) return query(rc[rt1] , rc[rt2] , mid + 1 , r , ql , qr); else return query(lc[rt1] , lc[rt2] , l , mid , ql , mid) + query(rc[rt1] , rc[rt2] , mid + 1 , r , mid + 1 , qr); } } PST; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); } template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); } template <typename T> inline void read(T &x) { T f = 1; x = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0'; x *= f; } int main() { read(n); for (int i = 1; i <= n; ++i) read(a[i]); for (int i = 1; i <= n; ++i) PST.modify(rt[i] , rt[i - 1] , 1 , (int)1e9 , a[i] , a[i]); read(m); while (m--) { int l , r; read(l); read(r); int ans = 1 , res = 1; while (true) { res = PST.query(rt[r] , rt[l - 1] , 1 , (int)1e9 , 1 , ans); if (res >= ans) ans = res + 1; else break; } printf("%d\n" , ans); } return 0; }