ubuntu16.04 + caffe + SSD + gpu 安装
昨天我们买好了硬件,今天我们开始安装caffe了,我本人安装过caffe不下10次,每次都是一大堆问题,后来终于总结了关键要点,就是操作系统.
1. 千万不要用ubuntu17.10来安装,
2. 最好的操作系统是ubuntu16.04
如果用17版本的来安装的话,很多时候会遇到要降级gcc的,降级也是非常麻烦的事,因为降级或升级的时候会需要安装很多其他的东西,无形中会打乱整个系统的安装环境,最后到时候又会遇到其他的问题,所以安装caffe的最重要环节是保持一个干净的适合的系统。
1.安装CUDA 8.0
安装CUDA之前,先检查机器是否安装了NVIDIA驱动。使用命令
- nvidia-smi
查看GPU列表,同时显示了驱动的版本。也可以通过命令
- nvidia-settings
注意上面我的显卡是384.98,后面我们会用到。
查看GPU的详细信息。如果没有安装驱动,则执行下面的命令(注意,我的显卡是GTX1060,所以安装nvidia-384,这个命令要根据你的显卡来安装)
[html] view plain copy
- sudo add-apt-repository ppa:graphics-drivers/ppa
- sudo apt-get update
- sudo apt-get install nvidia-384
- sudo apt-get install mesa-common-dev
- sudo apt-get install freeglut3-dev
安装NVIDIA的384版本的驱动。
下面开始安装CUDA 8.0。登陆CUDA官网去下载,不过现在官网下载的好像是9的版本,建议下载8的版本,
不要安装9的版本,可能有问题,你打开官网可能会让你安装9的版本,你可以到我的百度盘下载。
https://pan.baidu.com/s/1bp123Np
上面也同时给出了安装命令:
- sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb
- sudo apt-get update
- sudo apt-get install cuda
注意:在执行上述命令之前,一定要进入安装文件所在的路径,也即是下载的CUDA安装文件所在的地方,一般是/home/Downloads,所以先运行命令
cd Downloads
然后执行上面三行代码安装CUDA 8.0.
(4)测试CUDA的samples
cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
make
sudo ./deviceQuery
如果显示一些关于GPU的信息,则说明安装成功。
4.配置cuDNN
查看自己电脑显卡的计算能力:https://developer.nvidia.com/cuda-gpus
cuDNN是GPU加速计算深层神经网络的库。
首先去官网
https://developer.nvidia.com/rdp/cudnn-download 下载cuDNN,需要注册一个账号才能下载。下载版本号如下图:
我下载了一份,你可以从我的百度盘这里下载。
https://pan.baidu.com/s/1gfzs2bD
下载cuDNN5.1之后进行解压:
sudo tar -zxvf ./cudnn-8.0-linux-x64-v5.1.tgz
cd cuda;
sudo cp lib64/lib* /usr/local/cuda/lib64/;
sudo cp include/cudnn.h /usr/local/cuda/include/
更新软连接: cd /usr/local/cuda/lib64/
sudo chmod +r libcudnn.so.5.1.10
sudo ln -sf libcudnn.so.5.1.10 libcudnn.so.5
sudo ln -sf libcudnn.so.5 libcudnn.so
sudo ldconfig
请注意,请到自己解压后的lib64文件夹看这个文件libcudnn.so.5.0.5 ,电脑配置不同后面的数字型号不同,进行相应的修改,否则会报错。
2.配置Caffe
安装好CUDA之后,就可以配置Caffe了。
(1)通过下面的命令安装protobuf,leveldb,snappy,OpenCV,hdf5,boost依赖库
[html] view plain copy
- sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
- sudo apt-get install --no-install-recommends libboost-all-dev
(2)安装BLAS库
[html] view plain copy
- sudo apt-get install libatlas-base-dev
(3)接着是gflags, glog和lmdb
[html] view plain copy
- sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
(4)获取Caffe源码
git clone https://github.com/weiliu89/caffe.git
cd caffe
git checkout ssd
(5) 配置Caffe
- cp Makefile.config.example Makefile.config
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 # OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. # CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ # -gencode arch=compute_20,code=sm_21 \ # CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \ # -gencode arch=compute_35,code=sm_35 \ # -gencode arch=compute_50,code=sm_50 \ # -gencode arch=compute_52,code=sm_52 \ # -gencode arch=compute_60,code=sm_60 \ # -gencode arch=compute_61,code=sm_61 \ # -gencode arch=compute_61,code=compute_61 CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_60,code=sm_60 \ -gencode arch=compute_61,code=sm_61 \ -gencode arch=compute_61,code=compute_61 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := atlas # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. # ANACONDA_HOME := $(HOME)/anaconda # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ # $(ANACONDA_HOME)/include/python2.7 \ # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /usr/lib # PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) # WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. # INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include # LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/ # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL) # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) # USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
用我上面的Makefile.config就可以了,主要是修改了以下两行.
- INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
- LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/
这一步执行没有问题,接着修改/etc/profile文件
su root
-- input password
vi /etc/profile
export PYTHONPATH=$CAFFE_ROOT/python
然后开始运行以下命令
make -j8
make pymake test -j8
make runtest -j8
没有报错的话,至此,Caffe已经安装并配置成功了。