LC 926. Flip String to Monotone Increasing
A string of '0'
s and '1'
s is monotone increasing if it consists of some number of '0'
s (possibly 0), followed by some number of '1'
s (also possibly 0.)
We are given a string S
of '0'
s and '1'
s, and we may flip any '0'
to a '1'
or a '1'
to a '0'
.
Return the minimum number of flips to make S
monotone increasing.
Example 1:
Input: "00110"
Output: 1
Explanation: We flip the last digit to get 00111.
Example 2:
Input: "010110"
Output: 2
Explanation: We flip to get 011111, or alternatively 000111.
Example 3:
Input: "00011000"
Output: 2
Explanation: We flip to get 00000000.
Note:
1 <= S.length <= 20000
S
only consists of'0'
and'1'
characters.
Runtime: 19 ms, faster than 17.65% of Java online submissions for Flip String to Monotone Increasing.
package date20190116; public class flipstringtomonoincreasing926 { public static int minFlipsMonoIncr(String S) { int[][] lefttoright = new int[S.length()][2]; lefttoright[0][0] = S.charAt(0) == '0' ? 0 : 1; for(int i=1; i<S.length(); i++){ lefttoright[i][0] = (S.charAt(i) == '0' ? 0 : 1) + lefttoright[i-1][0]; } lefttoright[S.length()-1][1] = S.charAt(S.length()-1) == '1' ? 0 : 1; for(int i=S.length()-2; i>=0; i--){ lefttoright[i][1] = (S.charAt(i) == '1' ? 0 : 1) + lefttoright[i+1][1]; } // for(int[] x : lefttoright){ // System.out.print(x[0] + " "); // } int ret = S.length(); for(int i=0; i<S.length()-1; i++){ ret = Math.min(ret, lefttoright[i][0]+lefttoright[i+1][1]); } ret = Math.min(ret, lefttoright[0][1]); ret = Math.min(ret, lefttoright[S.length()-1][0]); return ret; } public static void main(String[] args){ String s = "00011000"; minFlipsMonoIncr(s); } }
another solution
Runtime: 12 ms, faster than 68.98% of Java online submissions for Flip String to Monotone Increasing.
class Solution { public int minFlipsMonoIncr(String S) { int[] dp = new int[S.length()+1]; int N = S.length(); for(int i=0; i < N; i++){ dp[i+1] = dp[i] + (S.charAt(i) == '1' ? 1 : 0); } int ans = Integer.MAX_VALUE; for(int i=0; i<N+1; i++){ ans = Math.min(ans, dp[i] + N-i - (dp[N] - dp[i])); } return ans; } }