LC 562. Longest Line of Consecutive One in Matrix

Given a 01 matrix M, find the longest line of consecutive one in the matrix. The line could be horizontal, vertical, diagonal or anti-diagonal.

Example:

Input:
[[0,1,1,0],
 [0,1,1,0],
 [0,0,0,1]]
Output: 3

 

Hint: The number of elements in the given matrix will not exceed 10,000.

Median的题就是简单一点。

1. DFS没有问题。

2. 怎么保存已经遍历过的点,因为每一个点可能有4个方向,所以可以开一个map记录每一个点的四个方向有没有被经过。

我的思路,Runtime有点慢。

Runtime: 88 ms, faster than 13.53% of C++ online submissions for Longest Line of Consecutive One in Matrix.

#define ALL(x) (x).begin(), (x).end()
#define FOR(i, a, b) for (remove_cv<remove_reference<decltype(b)>::type>::type i = (a); i < (b); i++)
#define REP(i, n) FOR(i, 0, n)
#include <vector>
#include <unordered_map>
using namespace std;
class Solution {
private:
  unordered_map<int, vector<bool>> mp;
  int dirs[4][2] = {{1,0},{1,1},{0,1},{1,-1}};
  int n,m;
public:
    int longestLine(vector<vector<int>>& M) {
      n = M.size();
      m = M[0].size();
      int ret;
      REP(i,n){
        REP(j,m){
          mp[i*m+j] = {false,false,false,false};
        }
      }
      REP(i,n){
        REP(j,m){
          if(M[i][j] == 1){
            dfs(M, i, j, ret);
          }
        }
      }
      return ret;      
    }
  bool valid(int x, int y){
    return x < n && x >= 0 && y < m && y >= 0;
  }
  
  void dfs(vector<vector<int>>& M, int x, int y, int& ret){
    if(x < 0 || y < 0 || x >= n || y >= m) return ;
    if(M[x][y] == 0) return ;
    REP(i, 4){
      if(mp[x*m+y][i]) continue;
      mp[x*m+y][i] = true;
      int tmpx = x, tmpy = y, dx = dirs[i][0], dy = dirs[i][1];
      int cnt = 1;
      while(valid(tmpx+dx,tmpy+dy) && M[tmpx+dx][tmpy+dy] == 1){
        tmpx += dx;tmpy += dy;
        mp[tmpx*m+tmpy][i] = true;
        cnt++;
      }
      tmpx = x, tmpy = y, dx = -dirs[i][0], dy = -dirs[i][1];
      while(valid(tmpx+dx,tmpy+dy) && M[tmpx+dx][tmpy+dy] == 1){
        tmpx += dx; tmpy += dy;
        mp[tmpx*m+tmpy][i] = true;
        cnt++;
      }
      ret = max(ret, cnt);
    }
  }
};
//[[0,1,1,0],
 //[0,1,1,0],
 //[0,0,0,1]]

int main(){
  vector<vector<int>> M {{0,1,1,0},{0,1,1,0},{0,0,0,1}};
  return 0;
}

 

另一个思路使用dp,dp的精髓在于前后的状态无关,有点类似马尔可夫链。

从矩阵第一行向下遍历,每一次保存的就是当前点四个方向的最大长度,如果点是1,该方向加1。也是很好的思路。

 

class Solution {
    
public:
    int longestLine(vector<vector<int>>& M) 
    {
        int r=M.size();
        if(r==0) return 0;
        int c=M[0].size();
        vector<vector<vector<int> > > dp(r,vector<vector<int>> (c,vector<int>(4,0) ) );
        int res=0;
        for(int i=0;i<r;i++)
            for(int j=0;j<c;j++)
            {
                if(M[i][j])
                {
                    dp[i][j][0]=j?dp[i][j-1][0]+1:1;
                    dp[i][j][1]=i?dp[i-1][j][1]+1:1;
                    dp[i][j][2]=i&&j?dp[i-1][j-1][2]+1:1;
                    dp[i][j][3]=i>0&&j<c-1?dp[i-1][j+1][3]+1:1;
                    for(auto x:dp[i][j])
                        res=max(res,x);
                }
            }
        
        return res;
    }
};

 

posted @ 2018-12-24 14:49  yuxihong  阅读(138)  评论(0编辑  收藏  举报