LC 265. Paint House II

 

 

There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.

The cost of painting each house with a certain color is represented by a n x k cost matrix. For example, costs[0][0] is the cost of painting house 0 with color 0; costs[1][2] is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses.

 

思路:DP,第n个house如果paint color i, 那第n-1个house就不能。

注意minval1和minval2是前一次dp的最小值,而不是前一个costs的最小值。

 

 

 1 class Solution {
 2 public:
 3     int minCostII(vector<vector<int>>& costs) {
 4         if (costs.size() == 0 || costs[0].size() == 0) return 0;
 5         int N = costs.size();
 6         int K = costs[0].size();
 7         vector<vector<int>> dp(N, vector<int>(K, 0));
 8         for (int i = 0; i < K; i++) dp[0][i] = costs[0][i];
 9         for (int i = 1; i < N; i++) {
10             int minval1 = INT_MAX, minval2 = INT_MAX;
11             int minidx1 = 0, minidx2 = 0;
12             for (int j = 0; j < K; j++) {
13                 if (minval1 > dp[i-1][j]) {
14                     minval1 = dp[i-1][j];
15                     minidx1 = j;
16                 }
17             }
18             for (int j = 0; j < K; j++) {
19                 if (minval2 > dp[i-1][j] && j != minidx1) {
20                     minval2 = dp[i-1][j];
21                     minidx2 = j;
22                 }
23             }
24             for (int j = 0; j < K; j++) {
25                 if (minidx1 == j) dp[i][j] = costs[i][j] + minval2;
26                 else dp[i][j] = costs[i][j] + minval1;
27             }
28         }
29         int minval = INT_MAX;
30         for (int i = 0; i<K; i++) {
31             minval = min(minval, dp[N-1][i]);
32         }
33         return minval;
34     }
35 };

 

posted @ 2018-12-18 10:58  yuxihong  阅读(114)  评论(0编辑  收藏  举报