tensorflow expand_dims和squeeze
有时我们会碰到升维或降维的需求,比如现在有一个图像样本,形状是 [height, width, channels],我们需要把它输入到已经训练好的模型中做分类,而模型定义的输入变量是一个batch,即形状为 [batch_size, height, width, channels],这时就需要升维了。tensorflow提供了一个方便的升维函数:expand_dims,参数定义如下:
tf.expand_dims(input, axis=None, name=None, dim=None)
参数说明:
input:待升维的tensor
axis:插入新维度的索引位置
name:输出tensor名称
dim: 一般不用
import tensorflow as tf sess = tf.Session() t = tf.constant([1, 2, 3], dtype=tf.int32) t.get_shape() # TensorShape([Dimension(3)]) tf.expand_dims(t, 0).get_shape() # TensorShape([Dimension(1), Dimension(3)]) tf.expand_dims(t, 1).get_shape() # TensorShape([Dimension(3), Dimension(1)])
squeeze正好执行相反的操作:删除大小是1的维度
tf.squeeze(input, squeeze_dims=None, name=None)
input: 待降维的张量
sequeeze_dims: list[int]类型,表示需要删除的维度索引。默认为[],即删除所以大小为1的维度
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t)) ==> [2, 3] Or, to remove specific size 1 dimensions: # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]
在处理tensor的时候合理使用这两个函数,能极大的提高效率。例如处理输入样本、执行向量与矩阵的点乘等情况。
参考:https://blog.csdn.net/qq_31780525/article/details/72280284