Spring + MySQL + Mybatis + Redis【二级缓存】

一、Redis环境

Redis 官网 :http://redis.io/

windows下载:https://github.com/dmajkic/redis/downloads

1、文件解压缩

2、启动Redis服务器

 

3、启动Redis客户端

 

4、测试Redis缓存

redis-cli.exe -h 127.0.0.1 -p 6379

set keytest valuestest 根据key、value加入缓存

get keytest 根据key获取值

flushall 清空所有缓存

5、设置Redis密码

6、conf配置文件

#是否以后台守护进程运行,默认为no, 取值yes, no 
daemonize no                   

#pid文件存放路径
pidfile /var/run/redis.pid    

#配置redis端口,默认6379
port 6379                    

#绑定ip。默认绑定所有本机ip,一般用在服务器多ip下,可以只监听内网服务器ip,保证服务安全
bind 127.0.0.1              

#sock文件 
unixsocket /tmp/redis.sock  

#客户端超时时间,单位秒 
timeout 300                

#log级别,支持四个级别,debug,notice,verbose,warning 
loglevel verbose           

#log文件路径
logfile                    

#log输出到标准设备,logs不写文件,输出到空设备,/deb/null
logfile stdout               

#保存快照的频率,在多长时间内执行一定数量的写操作时,保存快照的频率,可以设置多个条件。如果都注释掉,则不做内存数据持久化。如果只是把redis只用作cache,不开启持久化功能
save <seconds> <changes> 
save 900 1 

#是否使用压缩
rdbcompression            

#快照数据库名称 
dbfilename               

#数据库存放路径 
dir                       

#redis主从 做法  在从上填上主的IP和端口号 主上不用做任何设置
slaveof <masterip> <masterport>   

#主库服务器口令,如果主服务器未打开requirepass,则不需要此项
masterauth <master-password>     

#在master服务器挂掉或者同步失败时,从服务器是否继续提供服务
slave-serve-stale-data yes         

#设置redis服务密码,如果开启,则客户端连接时需要 -a  指定密码,否则操作会提示无权限
requirepass foobared               

#命令改名,相当于linux  alias,可以用改功能屏蔽一些危险命令
rename-command                    

#最大连接数;0 表示不限制
maxclients 128                   

#最大使用内存(分配的内存),推荐生产环境下做相应调整,我们用的是只用来做高速缓存,限制2G。默认情况下,redis会占用可用的所有内存
maxmemory <bytes>                

#过期策略,提供六种策略  
maxmemory-policy volatile-lru   
volatile-lru    //删除过期和lru 的key(默认值) 
allkeys-lru     //删除lru算法的key  
volatile-random //随机删除即将过期key  
allkeys->random //随机删除 
volatile-ttl    //删除即将过期的  
noeviction      //永不过期,返回错误 

#是否开启appendonlylog,开启的话每次写操作会记一条log。相当于mysql的binlog;不同的是,每次redis启动都会读此文件构建完整数据。即使删除rdb文件,数据也是安全的 
appendonly    

#日志文件的名称,默认appendonly.aof
appendfilename appendonly.aof   

#异步写append file 的策略。类似mysql事物log写方式。三种
appendfsync                       
appendfsync always               //同步,每次写都要flush到磁盘,安全,速度慢。 
appendfsync everysec             //每秒写(默认值,推荐值)同mysql 
appendfsync no                   //交给操作系统去做flush的动作 

#虚拟内存开关 
vm-enabled no               

#swap文件,不同redis swap文件不能共享。而且生产环境下,不建议放在tmp目录
vm-swap-file /tmp/redis.swap     

#vm大小限制。0:不限制,建议60-80% 可用内存大小
vm-max-memory 0                 

#根据缓存内容大小调整,默认32字节
vm-page-size 32                

#page数。每 8 page,会占用1字节内存。vm-page-size * vm-pages 等于 swap 文件大小
vm-pages 134217728              

#vm 最大io线程数。注意: 0 标志禁止使用vm 
vm-max-threads 4

二、实现Redis缓存

1、整体思路

  • 参考Ehcache实现MyBatis二级缓存代码(Maven引用对应jar查阅)
  • 使用Spring管理Redis连接池
  • 模仿EhcacheCache,实现RedisCache

2、pom.xml中加入Maven依赖

<!-- spring-redis实现 -->
<dependency>
    <groupId>org.springframework.data</groupId>
    <artifactId>spring-data-redis</artifactId>
    <version>1.6.2.RELEASE</version>
</dependency>
<!-- redis客户端jar -->
<dependency>
    <groupId>redis.clients</groupId>
    <artifactId>jedis</artifactId>
    <version>2.8.0</version>
</dependency> 

3、引入applicationContext.xml中引入redis配置

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:p="http://www.springframework.org/schema/p"
       xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">
    <!-- redis数据源 -->
    <bean id="poolConfig" class="redis.clients.jedis.JedisPoolConfig">
        <property name="maxIdle" value="${redis.maxIdle}" />
        <property name="maxTotal" value="${redis.maxActive}" />
        <property name="maxWaitMillis" value="${redis.maxWait}" />
        <property name="testOnBorrow" value="${redis.testOnBorrow}" />
    </bean>
    <!-- Spring-redis连接池管理工厂 -->
    <bean id="jedisConnectionFactory" class="org.springframework.data.redis.connection.jedis.JedisConnectionFactory"
          p:host-name="${redis.host}" p:port="${redis.port}" p:password="${redis.pass}"  p:pool-config-ref="poolConfig"/>
<!-- 使用中间类解决RedisCache.jedisConnectionFactory的静态注入,从而使MyBatis实现第三方缓存 --> <bean id="redisCacheTransfer" class="com.hsmdata.springTest.modules.cache.RedisCacheTransfer"> <property name="jedisConnectionFactory" ref="jedisConnectionFactory"/> </bean> </beans>

4、redis.properties配置文件

#============================#
#==== Redis settings ====#
#============================#
#redis 服务器 IP
redis.host=127.0.0.1

#redis 服务器端口
redis.port=6379

#redis 密码
redis.pass=

#redis 支持16个数据库(相当于不同用户)可以使不同的应用程序数据彼此分开同时又存储在相同的实例上
redis.dbIndex=3

#redis 缓存数据过期时间单位秒(3600*12 = 43 200)
redis.expiration=43200

#控制一个 pool 最多有多少个状态为 idle 的jedis实例
redis.maxIdle=200

#控制一个 pool 可分配多少个jedis实例
redis.maxActive=1000

#当borrow一个jedis实例时,最大的等待时间,如果超过等待时间,则直接抛出JedisConnectionException;
redis.maxWait=500

#在borrow一个jedis实例时,是否提前进行alidate操作;如果为true,则得到的jedis实例均是可用的;
redis.testOnBorrow=true

5、创建缓存实现类RedisCache

package com.hsmdata.springTest.modules.cache;

import org.apache.ibatis.cache.Cache;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.data.redis.connection.jedis.JedisConnection;
import org.springframework.data.redis.connection.jedis.JedisConnectionFactory;
import org.springframework.data.redis.serializer.JdkSerializationRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializer;
import redis.clients.jedis.exceptions.JedisConnectionException;

import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * @author 
 * 2018-04-10 20:50
 * $DESCRIPTION}
 */

public class RedisCache implements Cache
{
    private static final Logger logger = LoggerFactory.getLogger(RedisCache.class);

    private static JedisConnectionFactory jedisConnectionFactory;

    private final String id;

    /**
     * The {@code ReadWriteLock}.
     */
    private final ReadWriteLock readWriteLock = new ReentrantReadWriteLock();

    public RedisCache(final String id) {
        if (id == null) {
            throw new IllegalArgumentException("Cache instances require an ID");
        }
        logger.debug("MybatisRedisCache:id=" + id);
        this.id = id;
    }

    @Override
    public void clear()
    {
        JedisConnection connection = null;
        try
        {
            connection = jedisConnectionFactory.getConnection();
            connection.flushDb();
            connection.flushAll();
        }
        catch (JedisConnectionException e)
        {
            e.printStackTrace();
        }
        finally
        {
            if (connection != null) {
                connection.close();
            }
        }
    }

    @Override
    public String getId()
    {
        return this.id;
    }

    @Override
    public Object getObject(Object key)
    {
        Object result = null;
        JedisConnection connection = null;
        try
        {
            connection = jedisConnectionFactory.getConnection();
            RedisSerializer<Object> serializer = new JdkSerializationRedisSerializer();
            result = serializer.deserialize(connection.get(serializer.serialize(key)));
        }
        catch (JedisConnectionException e)
        {
            e.printStackTrace();
        }
        finally
        {
            if (connection != null) {
                connection.close();
            }
        }
        return result;
    }

    @Override
    public ReadWriteLock getReadWriteLock()
    {
        return this.readWriteLock;
    }

    @Override
    public int getSize()
    {
        int result = 0;
        JedisConnection connection = null;
        try
        {
            connection = jedisConnectionFactory.getConnection();
            result = Integer.valueOf(connection.dbSize().toString());
        }
        catch (JedisConnectionException e)
        {
            e.printStackTrace();
        }
        finally
        {
            if (connection != null) {
                connection.close();
            }
        }
        return result;
    }

    @Override
    public void putObject(Object key, Object value)
    {
        JedisConnection connection = null;
        try
        {
            connection = jedisConnectionFactory.getConnection();
            RedisSerializer<Object> serializer = new JdkSerializationRedisSerializer();
            connection.set(serializer.serialize(key), serializer.serialize(value));
        }
        catch (JedisConnectionException e)
        {
            e.printStackTrace();
        }
        finally
        {
            if (connection != null) {
                connection.close();
            }
        }
    }

    @Override
    public Object removeObject(Object key)
    {
        JedisConnection connection = null;
        Object result = null;
        try
        {
            connection = jedisConnectionFactory.getConnection();
            RedisSerializer<Object> serializer = new JdkSerializationRedisSerializer();
            result =connection.expire(serializer.serialize(key), 0);
        }
        catch (JedisConnectionException e)
        {
            e.printStackTrace();
        }
        finally
        {
            if (connection != null) {
                connection.close();
            }
        }
        return result;
    }

    public static void setJedisConnectionFactory(JedisConnectionFactory jedisConnectionFactory) {
        RedisCache.jedisConnectionFactory = jedisConnectionFactory;
    }

}
View Code

6、创建中间类RedisCacheTransfer,完成RedisCache.jedisConnectionFactory的静态注入

package com.hsmdata.springTest.modules.cache;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.connection.jedis.JedisConnectionFactory;

/**
 * @author 
 * 2018-04-10 20:52
 * $DESCRIPTION}
 */

public class RedisCacheTransfer {
    @Autowired
    public void setJedisConnectionFactory(JedisConnectionFactory jedisConnectionFactory) {
        RedisCache.setJedisConnectionFactory(jedisConnectionFactory);
    }
}
View Code

7、mapper中加入MyBatis二级缓存

<mapper namespace="com.hsmdata.springTest.modules.mapper.UserMapper" >
  <!--开启本mapper的二级缓存,隔10秒自动刷新缓存 flushInterval="10000" -->
  <cache type="com.hsmdata.springTest.modules.cache.RedisCache" />

8、Mybatis全局开启二级缓存

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration PUBLIC "-//mybatis.org//DTD Config 3.0//EN" "http://mybatis.org/dtd/mybatis-3-config.dtd">
<configuration>
    <settings>
        <!-- 开启二级缓存,默认是false -->
        <setting name="cacheEnabled" value="true"/>

        <!--resultMap中的association和collection标签具有延迟加载的功能。-->
        <!--延迟加载的意思是说,在关联查询时,利用延迟加载,先加载主信息。使用关联信息时再去加载关联信息。-->

        <!-- lazyLoadingEnabled:延迟加载启动,默认是false
        全局性设置懒加载。如果设为‘false’,则所有相关联的都会被初始化加载。-->
        <setting name="lazyLoadingEnabled" value="false"/>

        <!-- aggressiveLazyLoading:积极的懒加载,false的话按需加载,默认是true
        当设置为‘true’的时候,懒加载的对象可能被任何懒属性全部加载。否则,每个属性都按需加载。-->
        <setting name="aggressiveLazyLoading" value="true"/>

        <setting name="multipleResultSetsEnabled" value="true"/> 
        <setting name="useColumnLabel" value="true"/> 
        <setting name="useGeneratedKeys" value="true"/>
        <setting name="defaultExecutorType" value="SIMPLE"/> 
        <setting name="defaultStatementTimeout" value="25000"/>
        <setting name="logImpl" value="STDOUT_LOGGING"/>
    </settings>
</configuration>
View Code

9、测试

package com.springTest.mybatis.cache;

import com.hsmdata.springTest.modules.entity.User;
import com.hsmdata.springTest.modules.mapper.UserMapper;
import com.hsmdata.springTest.modules.service.UserService;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibatis.session.SqlSessionFactory;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

/**
 * @author 
 * 2018-04-10 15:11
 * $DESCRIPTION}
 */
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration({"classpath:/config/applicationContext.xml", "classpath:/config/spring-servlet.xml"})
public class CacheTest {
    @Autowired
    private UserService userService;
    @Autowired
    private SqlSessionFactory sqlSessionFactory;

    /**
     * 同一个sqlSession
     */
    @Test
    public  void testFirstCache(){
        SqlSession sqlSession=sqlSessionFactory.openSession();
        UserMapper userMapper= sqlSession.getMapper(UserMapper.class);
        User user=userMapper.selectByPrimaryKey(56);
        System.out.println(user);

/*       对sqlsession执行commit操作,也就意味着用户执行了update、delete等操作,那么数据库中的数据势必会发生变化,如果用户请求数据仍然使用之前内存中的数据,那么将读到脏数据。
        所以在执行sqlsession操作后,会清除保存数据的HashMap,用户在发起查询请求时就会重新读取数据并放入一级缓存中了。*/
     //   sqlSession.commit();

        user=userMapper.selectByPrimaryKey(56);
        System.out.println(user);
    }

    /**
     * 不同的sqlSession
     */
    @Test
    public  void testSecondaryCache(){
        SqlSession sqlSession=sqlSessionFactory.openSession();
        UserMapper userMapper= sqlSession.getMapper(UserMapper.class);
        User user=userMapper.selectByPrimaryKey(56);
        System.out.println(user);

//        即使开启了二级缓存,不同的sqlsession之间的缓存数据也不是想互访就能互访的,必须等到sqlsession关闭了以后,才会把其一级缓存中的数据写入二级缓存。
//        关闭session
//        sqlSession.close();

//        通过sqlSessionFactory创建一个新的session
        sqlSession=sqlSessionFactory.openSession();
//        获取mapper对象
        userMapper=sqlSession.getMapper(UserMapper.class);

        user=userMapper.selectByPrimaryKey(56);
        System.out.println(user);
    }

    /**
     * 不同的sqlSession
     */
    @Test
    public void testSecondaryCache2() {
       /* User user=new User("cache","123456","cache","","male",20);
        userService.insert(user);*/

        User user = userService.get(56);
        System.out.println(user);

        User user1 = userService.get(56);
        System.out.println(user1);
    }

    @Test
    public void testFirstCache2() {
       /* User user=new User("cache","123456","cache","","male",20);
        userService.insert(user);*/

        User user = userService.getTwo(56);
        System.out.println(user);
    }

    @Test
    public void testRedisCache(){
        User user=userService.get(55);
        System.out.println(user);

        User user2=userService.get(56);
        System.out.println(user2);

        User user3=userService.get(55);
        System.out.println(user3);

    }

}

 

 

 

posted @ 2018-04-11 17:08  esther-qing  阅读(817)  评论(0编辑  收藏  举报