4点告诉你!数据质量问题要如何解决
目录
一、数据质量问题包括哪些
二、数据质量问题如何解决
三、睿治数据质量管理平台的作用
做过BI或数仓项目的小伙伴肯定都知道,说到数据质量问题,这是一个业务和技术经常扯来扯去、互相推诿的问题。在很多情况下,企业都会把数据质量问题推给技术部门,让技术部门去查找和处理。但是企业的数据质量问题真的都是技术引起的吗,技术部门人一定会说:“这个锅我不背!”
一、数据质量问题包括哪些
接下来我们盘点下企业一般都会遇到哪些数据质量问题:
数据真实性:数据必须真实准确的反映客观的实体存在或真实的业务,真实可靠的原始统计数据是企业统计工作的灵魂,是一切管理工作的基础,是经营者进行正确经营决策必不可少的第一手资料。
数据准确性:准确性也叫可靠性,是用于分析和识别哪些是不准确的或无效的数据,不可靠的数据可能会导致严重的问题,会造成有缺陷的方法和糟糕的决策。
数据唯一性:用于识别和度量重复数据、冗余数据。重复数据是导致业务无法协同、流程无法追溯的重要因素,也是数据治理需要解决的最基本的数据问题。
数据完整性:数据完整性问题包括:模型设计不完整,例如:唯一性约束不完整、参照不完整;数据条目不完整,例如:数据记录丢失或不可用;数据属性不完整,例如:数据属性空值。不完整的数据所能借鉴的价值就会大大降低,也是数据质量问题最为基础和常见的一类问题。
数据一致性:多源数据的数据模型不一致,例如:命名不一致、数据结构不一致、约束规则不一致。数据实体不一致,例如:数据编码不一致、命名及含义不一致、分类层次不一致、生命周期不一致……。相同的数据有多个副本的情况下的数据不一致、数据内容冲突的问题。
数据关联性:数据关联性问题是指存在数据关联的数据关系缺失或错误,例如:函数关系、相关系数、主外键关系、索引关系等。存在数据关联性问题,会直接影响数据分析的结果,进而影响管理决策。
数据及时性:数据的及时性(In-time)是指能否在需要的时候获到数据,数据的及时性与企业的数据处理速度及效率有直接的关系,是影响业务处理和管理效率的关键指标。
二、数据质量问题如何解决
面对数据质量问题,有两个基本原则,那就是“早发现、早恢复”,也就是早点发现数据的异常点,同时尽快能够恢复正常。下面有一些方法可以参考一下的:
锦囊1:添加稽核校验任务
这个很好理解了,就是通过预先设置好的一些规则来验证当前调度任务执行结果表的质量,如果触发规则就自动发送预警给到相关的开发人员。
这里,规则可以划分重要等级,不同登记的规则可以采取不同的预警方式和处理方式,比如重要规则的,就停止调度任务的执行(那么后续链路的任务就会处理等待状态,等到上游任务结束才执行),同时通知运维人员对当前任务进行处理(建议通过电话通知)。如果是一些不那么重要的规则,就可以通过短信或者推送的方式告知。
锦囊2:建立全链路的监控
中台建设的目的就是抽象出可以公用的模型,这样子往往会有一个比较现实的问题,那就是数据加工的链路可能会很长,那么应用层上的指标出现问题了,排查问题也会比较困难了,所以我们需要对中台的数据模型的数据质量进行质量监控,也就是对链路中的表增加了一些稽核校验规则,如果结果数据出现问题,可以快速排查链路上的相关表的质量报告,快速定位到问题所在然后进行修复。
锦囊3:智能预警功能
这个idea很棒!它其实就是通过分析过去任务运行的时间以及任务需要输出的时间节点,然后根据当前物理资源的情况,自动判断这个调度任务是否可以在规定的时间节点前完成计算,如果不行的话就发起预警,让开发人员暂停一些低级别的任务或者说对时效性不高的任务,释放资源给重要任务使用。
锦囊4:规范化管理制度
我们上面讲了这么多,其实都是建立在我们配置了完整的数据链路以及稽核规则之上的,万一一开始我们就没有配置这些东西呢?那么一切都是浮云了。
所以我们必须得设计一些规范化的管理制度,比如评审机制,从而确保依赖关系的完整配置,同时对稽核规则也要进行评审,确保规则的完备性。
三、睿治数据质量管理平台的作用
正所谓,工欲善其事,必先利其器。亿信华辰睿治数据治理工具的数据质量管理模块以全面质量管理PDCA循环管理方法为指导,充分结合国内数据质量管理工作的特点,运用元数据管理、数据挖掘、数据分析、工作流、评分卡、可视化等技术最终帮助企业和政府建立数据质量管理体系,全面提升数据的完整性、规范性、及时性、一致性、逻辑性等,降低数据管理成本,减少因数据不可靠导致的决策偏差和损失。
1、构建数据质量规则库
定义数据验证方法,内嵌空值检查、值域检查等13种检查规则,基本覆盖目前数据质量相关问题。
2、发现数据质量问题
灵活定义多模型质检方案,多点监测、多模型质检方案,高效调度,并发和串行处理相结合,性能高效,只需2分30秒,便可完成20条规则百万级数据的质量检查。
3、出具全面的“体检报告”
内置常规质检分析报告,实时可视化呈现质检结果,质检结果模型灵活扩展,充分利用了BI工具的分析展现能力,提供图文并茂的质量检查结果报告。
4、数据质量全流程管理
提供从标准定义、质量监控、绩效评估、质量分析、质量报告、重大问题及时告警、流程整改发起、系统管理等数据质量管理全过程的功能,不仅能发现问题、还能将问题分发给数据负责人、管理者,在线跟踪问题处理进展。
数据质量的全面评价,是数据质量治理的准绳。在整个数据治理环节,亿信华辰睿治数据治理平台从数据源头控制数据质量,贯彻始终,全面提升数据的完整性、规范性、及时性、一致性,减少因数据不可靠导致的决策偏差和损失。
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· .NET Core 托管堆内存泄露/CPU异常的常见思路
· PostgreSQL 和 SQL Server 在统计信息维护中的关键差异
· C++代码改造为UTF-8编码问题的总结
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· 实操Deepseek接入个人知识库
· CSnakes vs Python.NET:高效嵌入与灵活互通的跨语言方案对比
· 【.NET】调用本地 Deepseek 模型
· Plotly.NET 一个为 .NET 打造的强大开源交互式图表库