hadoop2.x之IO:MapReduce压缩

前面我们说到了hadoop的压缩,在Hadoop所运行的数据一般都是很大的,输入的数据很大,输出的数据也很大。因此我们有必要对map和Reduce的数据进行压缩存储。

如果我们想对Reduce进行压缩,有两种方法,一种是配置使用Configuration配置。另一种是还是用FileOutputFormat类对输出进行设置。

1. 对Reduce进行压缩(使用Configuration)

使用Configuration,我们需要将mapred.output.compress设置为true。设置mapred.output.compression.codec为我们想设置的codec的类名。例如:

Job程序:MaxTemperatureWithCompression.java

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


public class MaxTemperatureWithCompression {
	
	public static void main(String[] args) throws Exception {
		if (args.length != 2) {
			System.err.println("Usage: MaxTemperature <input path> <output path>");
			System.exit(-1);
		}
		Configuration conf = new Configuration();
		// 重点是这两句
		conf.setBoolean("mapred.output.compress", true);
		conf.set("mapred.output.compression.codec", GzipCodec.class.getName());
		conf.set("mapred.jar", "MaxTemperature.jar");
		Job job = Job.getInstance(conf);
		
		job.setJarByClass(MaxTemperatureWithCompression.class);
		job.setJobName("Max temperature");
		
		FileInputFormat.addInputPath(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		job.setMapperClass(MaxTemperatureMapper.class);
		job.setReducerClass(MaxTemperatureReducer.class);
		
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		
		System.exit(job.waitForCompletion(true) ? 0 : 1);
		
	}

}

Map程序:

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper extends
		Mapper<LongWritable, Text, Text, IntWritable> {
	private static final int MISSING = 9999;

	@Override
	public void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
		String line = value.toString();
		String year = line.substring(15, 23);
		int airTemperature;
		if (line.charAt(87) == '+') { // parseInt doesn't like leading plus
										// signs
			airTemperature = Integer.parseInt(line.substring(88, 92));
		} else {
			airTemperature = Integer.parseInt(line.substring(87, 92));
		}
		String quality = line.substring(92, 93);
		if (airTemperature != MISSING && quality.matches("[01459]")) {
			context.write(new Text(year), new IntWritable(airTemperature));
		}
	}
}

Reduce程序

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer extends
		Reducer<Text, IntWritable, Text, IntWritable> {
	@Override
	public void reduce(Text key, Iterable<IntWritable> values, Context context)
			throws IOException, InterruptedException {
		int maxValue = Integer.MIN_VALUE;
		for (IntWritable value : values) {
			maxValue = Math.max(maxValue, value.get());
		}
		context.write(key, new IntWritable(maxValue));
	}
}

编译打包运行...

[grid@tiny01 myclass]$ hadoop fs -ls /
Found 5 items
-rw-r--r--   1 grid supergroup      49252 2017-07-29 00:07 /data.txt
-rw-r--r--   1 grid supergroup 4848295796 2017-07-01 00:40 /input
drwx------   - grid supergroup          0 2017-07-01 00:42 /tmp
drwxr-xr-x   - grid supergroup          0 2017-07-01 00:42 /user
[grid@tiny01 myclass]$ hadoop jar MaxTemperature.jar MaxTemperatureWithCompression /data.txt /out
[grid@tiny01 myclass]$ hadoop fs -cat /out/part-r-00000.gz |gunzip
20160622        380
20160623        310

有关Reduce结果压缩的属性:

属性名称 类型 默认值 描述
mapred.output.compress boolean false 压缩输出
mapred.output.compression.codec String org.apache.hadoop.io.compress.DefaultCodec reduce输出所用的压缩codec
mapred.output.compression String RECORD SqeuenceFile的输出可以使用的压缩类型:NONE,RECORD,BLOCK

2. 对Reduce进行压缩(使用FileOutputFormat)
我们只修改Job类:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperatureWithCompression2 {
	
	public static void main(String[] args) throws Exception {
		if (args.length != 2) {
			System.err.println("Usage: MaxTemperature <input path> <output path>");
			System.exit(-1);
		}
		Configuration conf = new Configuration();
		conf.set("mapred.jar", "MaxTemperature2.jar");
		Job job = Job.getInstance(conf);
		
		job.setJarByClass(MaxTemperatureWithCompression2.class);
		job.setJobName("Max temperature");
		
		FileInputFormat.addInputPath(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		// 添加这两句
		FileOutputFormat.setCompressOutput(job, true);
		FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);
		
		job.setMapperClass(MaxTemperatureMapper.class);
		job.setReducerClass(MaxTemperatureReducer.class);
		
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		
		System.exit(job.waitForCompletion(true) ? 0 : 1);
		
	}

}

运行:

 [grid@tiny01 myclass]$ hadoop jar MaxTemperature2.jar MaxTemperatureWithCompression2 /data.txt /out2
[grid@tiny01 myclass]$ hadoop fs -cat /out2/part-r-00000.gz |gunzip
20160622        380
20160623        310

是一样的.

3.对map任务进行压缩

因为map和reduce往往在不同的节点上,因此需要网络传输。如果map任务的输出使用一些能够快速压缩的算法,例如LZO,LZ4等就会使Hadoop的性能提升。map任务的压缩属性:

属性名称 类型 默认值 描述
mapred.compress.map.output boolean false 对map任务输出进行压缩
mapred.map.output.compression.codec String org.apache.hadoop.io.compress.DefaultCodec map输出压缩所用的codec

我们还可以使用另一种方式,使用JobConf(Configuration的子类)对象设置相关9配置:

JobConf conf = new JobConf();
conf.setCompressMapOutput(true);
conf.setMapOutputCompressorClass(GzipCodec.class)
conf.set("mapred.jar", "classname.jar");
Job job = Job.getInstance(conf);

4.参考资料
[1] Hadoop:The Definitive Guide,Third Edition, by Tom White. Copyright 2013 Tom White,978-1-449-31152-0

posted on 2017-08-13 09:32  erygreat  阅读(169)  评论(0编辑  收藏  举报

导航