对主定理(Master Theorem)的理解
前言
虽说在学OI的时候学到了非常多的有递归结构的算法或方法,也很清楚他们的复杂度,但更多时候只是能够大概脑补这些方法为什么是这个复杂度,而从未从定理的角度去严格证明他们。因此借着这个机会把主定理整个梳理一遍。
介绍
主定理(Master Theorem)提供了用于分析一类有递归结构算法时间复杂度的方法。这种递归算法通常有这样的结构:
def solve(problem):
solve_without_recursion()
for subProblem in problem:
solve(subProblem)
我们可以用一种表示方式来概括这些结构的算法:对于一个规模为\(n\)的问题,我们把它分为\(a\)个子问题,每个子问题规模为\(\frac nb\)。那么这种方法的复杂度\(T(n)\)可以表示为:
其中\(a\ge 1,b>1\)为常数,\(\frac{n}{b}\)指\(\lfloor \frac{n}{b}\rfloor\)或\(\lceil \frac{n}{b}\rceil\),\(f(n)\)为创造这些递归或者将这些子问题结果整合的函数。对这个方法我们可以建一个递归树:
其中树高为\(\log_bn\),树的第\(i\)层有\(a^i\)个节点,每个节点的问题规模为\(\frac{n}{b^i}\)。则这棵树有\(a^{\log_bn}=n^{\log_ba}\)个叶子节点。因此这种方法的复杂度也可以表示为:
从中我们可以看出,整个方法的复杂度取决于\(f(n)\)的复杂度。主定理对\(f(n)\)分了三种情况:
- \(\exist \varepsilon>0\ s.t.\ f(n)=O(n^{\log_ba-\varepsilon})\)。此时\(T(n)=\Theta(n^{\log_ba})\)。
- \(f(n)=\Theta(n^{\log_ba})\)。此时\(T(n)=\Theta(n^{\log_ba}\lg n)\)。
- \(\exist \varepsilon>0\ s.t.\ f(n)=\Omega(n^{\log_ba+\varepsilon})\),且\(\exist c<1\),当\(n\)足够大时,有\(a\, f(\frac{n}{b})\le c\, f(n)\)。此时\(T(n)=\Theta(f(n))\)。
\(f(n)\)含\(\log\)的情况类似,待补充。
证明
Case 1
令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\),由\(f(n)=O(n^{\log_ba-\varepsilon})\),得:
之后就是对后面式子的化简:
因此\(g(n)=O(\sum_{i=0}^{\log_bn-1}a^i(\frac{n}{b^i})^{\log_ba-\varepsilon})=O(n^{\log_ba})\)。所以有:
Case 2
同Case 1。令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\)得:
继续化简:
因此可得\(g(n)=n^{\log_ba}\log_bn=n^{\log_ba}\lg n\)。所以有:
Case 3
还是令\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\)。但Case 3这里有一个条件:\(a\, f(\frac{n}{b})\le c\, f(n)\)。我们对这个条件做一下处理:
由此我们可以很轻易的向下化简:
得\(g(n)=O(f(n))\)。又因为\(g(n)=\sum_{i=0}^{\log_bn-1}a^if(\frac{n}{b^i})\ge f(n)\),得\(g(n)=\Omega(f(n))\)。因此\(g(n)=\Theta(f(n))\)。
所以有:
证毕。
应用
二叉树建树
此时\(\log_ba<1\),满足Case 1。
BFPRT(Median of Medians)
此时\(\log_ba>1\),即划分之后总规模减小(\(1/5+7/10<1\)),满足Case 2。
归并排序
此时\(\log_ba=1\),满足Case 3。