-
梯度符号:
\(\nabla = \left[\frac{\partial}{\partial x} \quad \frac{\partial}{\partial y} \quad \frac{\partial}{\partial z} \right]^T\) -
矢量的梯度:
\(\nabla \mathbf{v} =\left[\begin{array}{l}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right]\left[\begin{array}{lll}u & v & w\end{array}\right]=\left[\begin{array}{lll} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\ \frac{\partial u}{\partial z}& \frac{\partial v}{\partial z}& \frac{\partial w}{\partial z}\end{array}\right]=\frac{\partial u_{j}}{\partial x_i}\)
https://zhuanlan.zhihu.com/p/139105732 -
矢量的Jacobi矩阵:
\(\mathbf{v}\nabla^T=\left(\nabla \mathbf{v}\right)^T\)
https://www.zhihu.com/question/374466553/answer/1043618492
梯度之上: Jacobian矩阵 和 Hessian矩阵 -
综合:
10935 梯度、散度、旋度、Jacobian、Hessian、Laplacian 的关系图
导数、梯度、 Jacobian、Hessian
Vector, Matrix, and Tensor Derivatives
The Matrix Calculus You Need For Deep Learning
-----------------------------------------------------------
本文来自博客园,作者:小厨房,转载请注明原文链接:https://www.cnblogs.com/erichf/p/13952400.html,否则视为侵权
如有疑问,请站内留言 或加 QQ:②⑨⓪②② ⑦③⑦⑨
-----------------------------------------------------------