第一周实践作业
作业任务
课程中以1张图片为例,测试了预测效果。请从原始mnist数据集中,『随机抽取』100张图片,测试模型的分类准确率。
import os
import random
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
import numpy as np
from PIL import Image
import gzip
import json
train_data=paddle.dataset.mnist.train()
test_data=paddle.dataset.mnist.test()
train_data=paddle.reader.shuffle(train_data,100)
test_data=paddle.reader.shuffle(test_data,100)
train_data=paddle.batch(train_data,100)
test_data=paddle.batch(test_data,100)
class MNIST(fluid.dygraph.Layer):
def __init__(self):
super(MNIST, self).__init__()
# 定义一个卷积层,使用relu激活函数
self.conv1 = Conv2D(num_channels=1, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
# 定义一个池化层,池化核为2,步长为2,使用最大池化方式
self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
# 定义一个卷积层,使用relu激活函数
self.conv2 = Conv2D(num_channels=20, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
# 定义一个池化层,池化核为2,步长为2,使用最大池化方式
self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
# 定义一个全连接层,输出节点数为10
self.fc = Linear(input_dim=980, output_dim=10, act='softmax')
# 定义网络的前向计算过程
def forward(self, inputs, label):
x = self.conv1(inputs)
x = self.pool1(x)
x = self.conv2(x)
x = self.pool2(x)
x = fluid.layers.reshape(x, [x.shape[0], 980])
x = self.fc(x)
if label is not None:
acc = fluid.layers.accuracy(input=x, label=label)
return x, acc
else:
return x
use_gpu = True
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
from visualdl import LogWriter
log_writer = LogWriter(logdir="./log")
with fluid.dygraph.guard(place):
model = MNIST()
model.train()
iter = 0
EPOCH_NUM = 5
BATCH_SIZE = 100
# 定义学习率,并加载优化器参数到模型中
total_steps = (int(60000//BATCH_SIZE) + 1) * EPOCH_NUM
lr = fluid.dygraph.PolynomialDecay(0.01, total_steps, 0.001)
# 使用Adam优化器
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=lr, parameter_list=model.parameters())
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(train_data()):
#准备数据,变得更加简洁
img_data = np.array([x[0] for x in data]).astype('float32').reshape(-1,1,28,28)
# 获得图像标签数据,并转为float32类型的数组
label_data = np.array([x[1] for x in data]).astype('int64').reshape(-1, 1)
image = fluid.dygraph.to_variable(img_data)
label = fluid.dygraph.to_variable(label_data)
#前向计算的过程,同时拿到模型输出值和分类准确率
predict, acc = model(image, label)
avg_acc = fluid.layers.mean(acc)
#计算损失,取一个批次样本损失的平均值
loss = fluid.layers.cross_entropy(predict, label)
avg_loss = fluid.layers.mean(loss)
#每训练了200批次的数据,打印下当前Loss的情况
if batch_id % 200 == 0:
print("epoch: {}, batch: {}, loss is: {}, acc is {}".format(epoch_id, batch_id, avg_loss.numpy(),avg_acc.numpy()))
log_writer.add_scalar(tag = 'acc', step = iter, value = avg_acc.numpy())
log_writer.add_scalar(tag = 'loss', step = iter, value = avg_loss.numpy())
iter = iter + 200
#后向传播,更新参数的过程
avg_loss.backward()
optimizer.minimize(avg_loss)
model.clear_gradients()
# 保存模型参数和优化器的参数
fluid.save_dygraph(model.state_dict(), './checkpoint/mnist_epoch{}'.format(epoch_id))
fluid.save_dygraph(optimizer.state_dict(), './checkpoint/mnist_epoch{}'.format(epoch_id))
with fluid.dygraph.guard():
print('start evaluation .......')
#加载模型参数
model = MNIST()
model_state_dict, _ = fluid.load_dygraph('checkpoint/mnist_epoch4.pdopt')
model.load_dict(model_state_dict)
model.eval()
acc_set = []
avg_loss_set = []
for batch_id, data in enumerate(test_data()):
x_data = np.array([x[0] for x in data]).astype('float32').reshape(-1,1,28,28)
# 获得图像标签数据,并转为float32类型的数组
y_data = np.array([x[1] for x in data]).astype('int64').reshape(-1, 1)
img = fluid.dygraph.to_variable(x_data)
label = fluid.dygraph.to_variable(y_data)
prediction, acc = model(img, label)
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
acc_set.append(float(acc.numpy()))
avg_loss_set.append(float(avg_loss.numpy()))
#计算多个batch的平均损失和准确率
acc_val_mean = np.array(acc_set).mean()
avg_loss_val_mean = np.array(avg_loss_set).mean()
print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))
start evaluation .......
loss=0.03686333746787568, acc=0.9876000076532364