安卓ro.serialno产生的整个流程

前言:

关于ro.serialno这个属性,相信大家都不陌生了,应用层的Build.getSerial()Build.SERIAL等均是直接或间接的获取了这个属性值。接下来从boot到系统应用,小小的分析一下它的整个流程:

由于是APP经常使用,那我们从应用层分析到底层kernel/boot

一,framework层

好的,我们进入安卓源码目录,grep查找一下:

xxxx@server01:~/workspace/rk3128_tablet$ grep -nrw "SERIAL" frameworks/base/
frameworks/base/docs/html/about/versions/android-4.2.jd:364:address or the {@link android.os.Build#SERIAL} number), they will provide the same value for each
frameworks/base/api/test-current.txt:28614:    field public static final java.lang.String SERIAL;
frameworks/base/api/system-current.txt:31035:    field public static final java.lang.String SERIAL;
frameworks/base/api/current.txt:28540:    field public static final java.lang.String SERIAL;
frameworks/base/core/java/android/os/Build.java:102:    public static final String SERIAL = getString("ro.serialno");
frameworks/base/tests/AccessoryDisplay/sink/src/com/android/accessorydisplay/sink/SinkActivity.java:61:    private static final String SERIAL = "0000000012345678";
frameworks/base/tests/AccessoryDisplay/sink/src/com/android/accessorydisplay/sink/SinkActivity.java:254:            sendString(conn, UsbAccessoryConstants.ACCESSORY_STRING_SERIAL, SERIAL);
xxxx@server01:~/workspace/rk3128_tablet$ 

成功的在Build.java找到了这个SERIAL属性,我们继续往下跟getString这个方法大概在871行。

.....
/**
     * Returns the version string for the radio firmware.  May return
     * null (if, for instance, the radio is not currently on).
     */
    public static String getRadioVersion() {
        return SystemProperties.get(TelephonyProperties.PROPERTY_BASEBAND_VERSION, null);
    }

	private static String getString(String property) {
        return SystemProperties.get(property, UNKNOWN);
    }

	private static String[] getStringList(String property, String separator) {
        String value = SystemProperties.get(property);
        if (value.isEmpty()) {
            return new String[0];
        } else {
            return value.split(separator);
        }
    }
.....

SystemProperties大家应该很熟了

可以看出,getString是传入的"ro.serialno"这个字串去获取的属性中的值,其效果在命令行上相当于getprop ro.serialno

好的,framework分析到这。

二,系统层

我们从第一个程序init开始,源码路径:

your_pro/system/core/init/init.cpp

根据关键字ro.serialno找到了地方,大概在464行:


static void export_kernel_boot_props() {
    char cmdline[1024];
    char* s1;
    char* s2;
    char* s3;
    char* s4;

    struct {
        const char *src_prop;
        const char *dst_prop;
        const char *default_value;
    } prop_map[] = {
        { "ro.boot.serialno",   "ro.serialno",   "", },//就是这了,根据ro.boot.serialno的值设置ro.serialno的值
        { "ro.boot.mode",       "ro.bootmode",   "unknown", },
        { "ro.boot.baseband",   "ro.baseband",   "unknown", },
        { "ro.boot.bootloader", "ro.bootloader", "unknown", },
        { "ro.boot.hardware",   "ro.hardware",   "unknown", },
        { "ro.boot.revision",   "ro.revision",   "0", },
    };

    //if storagemedia is emmc, so we will wait emmc init finish
    for (int i = 0; i < EMMC_RETRY_COUNT; i++) {
        proc_read( "/proc/cmdline", cmdline, sizeof(cmdline) );
        s1 = strstr(cmdline, STORAGE_MEDIA);
        s2 = strstr(cmdline, "androidboot.mode=emmc");
	s3 = strstr(cmdline, "storagemedia=nvme");
	s4 = strstr(cmdline, "androidboot.mode=nvme");

        if ((s1 == NULL) && (s3 == NULL)) {
            //storagemedia is unknow
            break;
        }

        if ((s1 > 0) && (s2 > 0)) {
            ERROR("OK,EMMC DRIVERS INIT OK\n");
            property_set("ro.boot.mode", "emmc");
            break;
        } else if ((s3 > 0) && (s4 > 0)) {
	    ERROR("OK,NVME DRIVERS INIT OK\n");
	    property_set("ro.boot.mode", "nvme");
	    break;
	} else {
            ERROR("OK,EMMC DRIVERS NOT READY, RERRY=%d\n", i);
            usleep(10000);
        }
    }

    for (size_t i = 0; i < ARRAY_SIZE(prop_map); i++) {//这里这里
        std::string value = property_get(prop_map[i].src_prop);
        property_set(prop_map[i].dst_prop, (!value.empty()) ? value.c_str() : prop_map[i].default_value);
    }

    /* save a copy for init's usage during boot */
    std::string bootmode_value = property_get("ro.bootmode");
    if (!bootmode_value.empty())
        strlcpy(bootmode, bootmode_value.c_str(), sizeof(bootmode));

    /* if this was given on kernel command line, override what we read
     * before (e.g. from /proc/cpuinfo), if anything */
    std::string hardware_value = property_get("ro.boot.hardware");
    if (!hardware_value.empty())
        strlcpy(hardware, hardware_value.c_str(), sizeof(hardware));
    property_set("ro.hardware", hardware);

    symlink_fstab();
}

以上代码针对于ro.serialno的大致意思就是根据ro.boot.serialno的值设它。

但是,ro.boot.serialno在哪还不知道呢,我们继续。

好的,分析开始

从mian开始,找到第一阶段需要执行的代码

int main(int argc, char** argv) {
....

	if (!is_first_stage) {
        // Indicate that booting is in progress to background fw loaders, etc.
        close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));

        property_init();

        // If arguments are passed both on the command line and in DT,
        // properties set in DT always have priority over the command-line ones.
        process_kernel_dt();
        process_kernel_cmdline();//根据函数名字就大概知道,这是处理内核cmdline的函数

        //add by xzj to set ro.rk.soc read from /proc/cpuinfo if not set
        set_soc_if_need();

        // Propagate the kernel variables to internal variables
        // used by init as well as the current required properties.
        export_kernel_boot_props();//这里就是将处理完cmdline的相关的boot属性输出,我们上面已经分析过这个函数了
    }

....
}

先看process_kernel_cmdline函数:

这里做了两个动作,改cmdline的权限和设置import_kernel_nv这个回调函数

static void process_kernel_cmdline() {
    // Don't expose the raw commandline to unprivileged processes.
    chmod("/proc/cmdline", 0440);

    // The first pass does the common stuff, and finds if we are in qemu.
    // The second pass is only necessary for qemu to export all kernel params
    // as properties.
    import_kernel_cmdline(false, import_kernel_nv);
    if (qemu[0]) import_kernel_cmdline(true, import_kernel_nv);
}

回调函数import_kernel_nv将传入的cmdline中的条目解析并且设置property

static void import_kernel_nv(const std::string& key, const std::string& value, bool for_emulator) {
    if (key.empty()) return;
    if (for_emulator) {
        // In the emulator, export any kernel option with the "ro.kernel." prefix.
        property_set(android::base::StringPrintf("ro.kernel.%s", key.c_str()).c_str(), value.c_str());
        return;
    }

    if (key == "qemu") {
        strlcpy(qemu, value.c_str(), sizeof(qemu));
    } else if (android::base::StartsWith(key, "androidboot.")) {
        property_set(android::base::StringPrintf("ro.boot.%s", key.c_str() + 12).c_str(),
                     value.c_str());
    }
}

再看看import_kernel_cmdline做了什么动作?

这里从/proc/cmdline读出数据,然后以空格“ ”分开数据,for循环调用传入的回调函数指针fn,也就是import_kernel_nv函数,再将分开的数据传参入回调函数。

void import_kernel_cmdline(bool in_qemu,
                           std::function<void(const std::string&, const std::string&, bool)> fn) {
    std::string cmdline;
    android::base::ReadFileToString("/proc/cmdline", &cmdline);

    for (const auto& entry : android::base::Split(android::base::Trim(cmdline), " ")) {
        std::vector<std::string> pieces = android::base::Split(entry, "=");
        if (pieces.size() == 2) {
            fn(pieces[0], pieces[1], in_qemu);
        }
    }
}

这里小小的总结下:

从上面的步骤跟踪下来,发现整体流程是将从boot传给kernelcmdline中的androidboot.serialno赋给ro.boot.serialno,然后再根据ro.boot.*相关的属性去设置export_kernel_boot_props函数中prop_map这个数组对应的ro. 属性。

举个栗子,此处serialno的流程就该为:

boot- > kernel cmdline -> androidboot.serialno -> ro.boot.serialno -> ro.serialno -> 然后再被prop调用

到这里,只有kernel cmdline之前的流程不知道了,具体boot是怎么将一堆东西传给/proc/cmdline的呢?

好的,安排它~

三,u-Boot层

继续进uboot目录搜索一下:

xxx@server01:~/workspace/rk3128_tablet$ grep -nrw "androidboot.serialno" u-boot/
匹配到二进制文件 u-boot/u-boot.bin
匹配到二进制文件 u-boot/common/cmd_bootrk.o
匹配到二进制文件 u-boot/common/built-in.o
匹配到二进制文件 u-boot/uboot.img
匹配到二进制文件 u-boot/u-boot
u-boot/include/fastboot.h:81:#define FASTBOOT_SERIALNO_BOOTARG "androidboot.serialno"
xxx@server01:~/workspace/rk3128_tablet$ 

找到一个FASTBOOT_SERIALNO_BOOTARG,继续搜它,看谁用了

xtw-cl@server01:~/workspace/pnd_rk3128_tablet$ grep -nrw "FASTBOOT_SERIALNO_BOOTARG" u-boot/
u-boot/common/cmd_bootrk.c:583:         if (!strstr(command_line, FASTBOOT_SERIALNO_BOOTARG)) {
u-boot/common/cmd_bootrk.c:585:                                 "%s %s=%s", command_line, FASTBOOT_SERIALNO_BOOTARG, sn);
u-boot/include/fastboot.h:81:#define FASTBOOT_SERIALNO_BOOTARG "androidboot.serialno"
xtw-cl@server01:~/workspace/pnd_rk3128_tablet$

找到了,u-boot/common/cmd_bootrk.c文件

好的,开始分析源码:

static void rk_commandline_setenv(const char *boot_name, rk_boot_img_hdr *hdr, bool charge)
{
....

	snprintf(command_line, sizeof(command_line),
			 "%s SecureBootCheckOk=%d", command_line, SecureBootCheckOK);

	char *sn = getenv("fbt_sn#");
	if (sn != NULL) {
		/* append serial number if it wasn't in device_info already */
		if (!strstr(command_line, FASTBOOT_SERIALNO_BOOTARG)) {
			snprintf(command_line, sizeof(command_line),
					"%s %s=%s", command_line, FASTBOOT_SERIALNO_BOOTARG, sn);
		}
	}

	command_line[sizeof(command_line) - 1] = 0;

	setenv("bootargs", command_line);
#endif /* CONFIG_CMDLINE_TAG */
}

从源码可得知,androidboot.serialno的这个sn参数是通过getenv("fbt_sn#")获取到的,好的,继续搜索fbt_sn#看看是哪里设置的这个环境变量

xxx@server01:~/workspace/rk3128_tablet$ grep -nrw "fbt_sn#" u-boot/
匹配到二进制文件 u-boot/u-boot.bin
u-boot/common/cmd_bootrk.c:580: char *sn = getenv("fbt_sn#");
匹配到二进制文件 u-boot/common/cmd_fastboot.o
匹配到二进制文件 u-boot/common/cmd_bootrk.o
u-boot/common/cmd_fastboot.c:662:       //setenv("fbt_sn#", serial_number);
u-boot/common/cmd_fastboot.c:668:       char *sn = getenv("fbt_sn#");
匹配到二进制文件 u-boot/common/built-in.o
u-boot/board/rockchip/rk33xx/rk33xx.c:226:              setenv("fbt_sn#", tmp_buf);
u-boot/board/rockchip/rk32xx/rk32xx.c:220:              setenv("fbt_sn#", tmp_buf);
匹配到二进制文件 u-boot/board/rockchip/rk32xx/rk32xx.o
匹配到二进制文件 u-boot/board/rockchip/rk32xx/built-in.o
匹配到二进制文件 u-boot/uboot.img
匹配到二进制文件 u-boot/u-boot
xxx@server01:~/workspace/rk3128_tablet$ 

可以得知,设setenv的有两个,但是我们生成的二进制文件是rk32xx.o,所以我们分析rk32xx.c这个源码。


#ifdef CONFIG_BOARD_LATE_INIT
extern char bootloader_ver[24];
int board_late_init(void)
{
	debug("board_late_init\n");
	
    ....

	char tmp_buf[32];
	/* rk sn size 30bytes, zero buff */
	memset(tmp_buf, 0, 32);
	if (rkidb_get_sn(tmp_buf)) {
		setenv("fbt_sn#", tmp_buf);
	}

	debug("fbt preboot\n");
	board_fbt_preboot();

	return 0;
}
#endif

从上面可以看出设进fbt_sn#属性名字的tmp_buf是从rkidb_get_sn函数获取的,so继续。

顺便提一句,board_late_init会在环境初始化函数中调用,而它会被启动的更底层的汇编程序调用,这里不展开讲

搜一下这个rkidb_get_sn函数

xxxx@server01:~/workspace/rk3128_tablet$ grep -nrw "rkidb_get_sn" u-boot/
u-boot/board/rockchip/rk33xx/rk33xx.c:225:      if (rkidb_get_sn(tmp_buf)) {
u-boot/board/rockchip/rk32xx/rk32xx.c:219:      if (rkidb_get_sn(tmp_buf)) {
匹配到二进制文件 u-boot/board/rockchip/rk32xx/rk32xx.o
匹配到二进制文件 u-boot/board/rockchip/rk32xx/built-in.o
u-boot/board/rockchip/common/rkloader/idblock.c:565:int rkidb_get_sn(char* buf)
u-boot/board/rockchip/common/rkloader/idblock.su:7:idblock.c:565:5:rkidb_get_sn 16      static
u-boot/board/rockchip/common/rkloader/idblock.h:252:int rkidb_get_sn(char *buf);
匹配到二进制文件 u-boot/board/rockchip/common/rkloader/idblock.o
匹配到二进制文件 u-boot/board/rockchip/common/built-in.o
u-boot/u-boot.map:1468: .text.rkidb_get_sn
u-boot/u-boot.map:1470:                0x0000000060008bc4                rkidb_get_sn
u-boot/u-boot.map:4608: .rel.text.rkidb_get_sn
u-boot/System.map:219:60008bc4 T rkidb_get_sn
匹配到二进制文件 u-boot/u-boot
xxxx@server01:~/workspace/rk3128_tablet$

实现在u-boot/board/rockchip/common/rkloader/idblock.c文件,打开它

int  (char* buf)
{
	int size;
	Sector3Info *pSec3;
	uint8 *pidbbuf = (uint8 *)gIdDataBuf;

	pSec3 = (Sector3Info *)(pidbbuf + IDBLOCK_SIZE * IDBLOCK_SN);

	size = pSec3->snSize;
	if (size <= 0 || size > SN_MAX_SIZE) {
		PRINT_E("empty serial no.\n");
		return false;
	}
	strncpy(buf, (char *)pSec3->sn, size);
	buf[size] = '\0';
	PRINT_E("sn: %s\n", buf);
	return true;
}

可以看出是通过ID Block去读的,通过地址偏移取值拿到的,那我们继续找寻哪里给这个gIdDataBuf赋的值。

搜索一下,根据搜索出的信息去筛选

xxxxx@server01:~/workspace/rk3128_tablet$ grep -nrw "gIdDataBuf" u-boot/
匹配到二进制文件 u-boot/board/rockchip/common/storage/storage.o
u-boot/board/rockchip/common/storage/storage.h:197:EXT uint32 gIdDataBuf[512] __attribute__((aligned(ARCH_DMA_MINALIGN)));
u-boot/board/rockchip/common/SecureBoot/SecureBoot.c:133:       FlashSramLoadStore(&gIdDataBuf[384], 1536, 1, 512);  // idblk sn info
匹配到二进制文件 u-boot/board/rockchip/common/SecureBoot/SecureBoot.o
匹配到二进制文件 u-boot/board/rockchip/common/mediaboot/sdmmcBoot.o
u-boot/board/rockchip/common/mediaboot/sdmmcBoot.c:120:         ret1 = SDM_Read(ChipSel, SD_CARD_BOOT_PART_OFFSET, 4, gIdDataBuf);
u-boot/board/rockchip/common/mediaboot/sdmmcBoot.c:123:                 if (gIdDataBuf[0] == 0xFCDC8C3B) {
匹配到二进制文件 u-boot/board/rockchip/common/mediaboot/sdmmcBoot.c
u-boot/board/rockchip/common/mediaboot/UMSBoot.c:307:                   __UMSReadLBA(usb_stor_curr_dev, UMS_BOOT_PART_OFFSET, gIdDataBuf, 4);
u-boot/board/rockchip/common/mediaboot/UMSBoot.c:308:                   if (gIdDataBuf[0] == 0xFCDC8C3B) {
u-boot/board/rockchip/common/mediaboot/UMSBoot.c:309:                           if (0 == gIdDataBuf[128+104/4]) {
u-boot/board/rockchip/common/mediaboot/UMSBoot.c:313:                           } else if (1 == gIdDataBuf[128+104/4]) {
u-boot/board/rockchip/common/mediaboot/sdhciBoot.c:53:  block_mmc_read(SDHCI_EMMC_DEV_ID, SD_CARD_BOOT_PART_OFFSET, 4, gIdDataBuf);
u-boot/board/rockchip/common/rkloader/idblock.c:30:extern uint32 gIdDataBuf[512];
u-boot/board/rockchip/common/rkloader/idblock.c:505:            pdst = (uint8 *)gIdDataBuf;
u-boot/board/rockchip/common/rkloader/idblock.c:512:    GetIdblockDataNoRc4((char *)&gIdDataBuf[128 * 2], 512);
u-boot/board/rockchip/common/rkloader/idblock.c:513:    GetIdblockDataNoRc4((char *)&gIdDataBuf[128 * 3], 512);
u-boot/board/rockchip/common/rkloader/idblock.c:532:    if (gIdDataBuf[0] == 0xFCDC8C3B) {
u-boot/board/rockchip/common/rkloader/idblock.c:533:            memcpy((char *)&idb0_info, gIdDataBuf, 512);
u-boot/board/rockchip/common/rkloader/idblock.c:545:    uint8 *buf = (uint8 *)&gIdDataBuf[0];
u-boot/board/rockchip/common/rkloader/idblock.c:569:    uint8 *pidbbuf = (uint8 *)gIdDataBuf;
u-boot/board/rockchip/common/rkloader/idblock.c:588:    uint8 *pidbbuf = (uint8 *)gIdDataBuf;
u-boot/board/rockchip/common/rkloader/idblock.c:609:    uint8 *pidbbuf = (uint8 *)gIdDataBuf;
匹配到二进制文件 u-boot/board/rockchip/common/rkloader/idblock.o
匹配到二进制文件 u-boot/board/rockchip/common/built-in.o
u-boot/u-boot.map:6203: .bss.gIdDataBuf
u-boot/u-boot.map:6205:                0x000000006009b5c0                gIdDataBuf
u-boot/System.map:1464:6009b5c0 B gIdDataBuf
匹配到二进制文件 u-boot/u-boot
xxxxx@server01:~/workspace/rk3128_tablet$

我们这里的目的是需要知道哪里给gIdDataBuf其赋值,所以我们直接查看有编译到产出.o文件的并且有可能是直接给它赋值的文件及函数位置。

文件位置:u-boot/board/rockchip/common/mediaboot/sdmmcBoot.c

从名字就可以大概看出,这是操作sdmmc的,也就是eMMCSD卡的地方,好的继续看函数。


uint32 SdmmcInit(uint32 ChipSel)
{
	int32 ret1 = SDM_SUCCESS;
	uint32 ioctlParam[5] = {0, 0, 0, 0, 0};

	.....
	
    ret1 = SdmmcReinit(ChipSel);
	if (ret1 == SDM_SUCCESS) { /* 卡能识别 */
#ifdef EMMC_NOT_USED_BOOT_PART
		ioctlParam[0] = ChipSel;
		
        .....
            
		/* id blk data */
		ret1 = SDM_Read(ChipSel, SD_CARD_BOOT_PART_OFFSET, 4, gIdDataBuf);//这里就是加载eMMC中id block数据的地方
#ifdef RK_SDCARD_BOOT_EN
		if (ChipSel == 0) {
			if (gIdDataBuf[0] == 0xFCDC8C3B) {
				gSdCardInfoTbl[ChipSel].FwPartOffset = SD_CARD_FW_PART_OFFSET;
				if (0 == gIdDataBuf[128 + 104 / 4]) { /* sd卡升级 */
					gsdboot_mode = SDMMC_SDCARD_UPDATE;
					PRINT_E("SDCard Update.\n");
				} else if (1 == gIdDataBuf[128 + 104 / 4]) { /* sd 卡运行 */
					gsdboot_mode = SDMMC_SDCARD_BOOT;
					PRINT_E("SDCard Boot.\n");
				}
			} else {
	.....
	return ERROR;
}

好的,从上面可以看出,gIdDataBuf里是存在eMMC上某个地方的数据,通过SDM_Read去读取加载的。

其实到这里,已经非常明确了,但是秉着一探到底的原则,我们继续往前~

看看SdmmcInit是哪里调用的?

经过grep跟踪大法一顿操作,加上分析,发现SdmmcInit是以方法结构体的方式存在于u-boot/board/rockchip/common/storage/storage.c文件中,具体如下:

#ifdef RK_SDMMC_BOOT_EN
static MEM_FUN_T emmcFunOp =
{
	2,
	BOOT_FROM_EMMC,
	0,
	SdmmcInit,
	SdmmcReadID,
	SdmmcBootReadPBA,
	SdmmcBootWritePBA,
	SdmmcBootReadLBA,
	SdmmcBootWriteLBA,
	SdmmcBootErase,
	SdmmcReadFlashInfo,
	SdmmcCheckIdBlock,
	NULL,
	NULL,
	NULL,
	SdmmcGetCapacity,
	SdmmcSysDataLoad,
	SdmmcSysDataStore,
	SdmmcBootEraseData,
};
#endif

然后又被包含在了一个结构体指针数组里:

static MEM_FUN_T *memFunTab[] = 
{
#ifdef RK_UMS_BOOT_EN
	&UMSFunOp,
#endif

#ifdef RK_SDCARD_BOOT_EN
	&sd0FunOp,
#endif

#if defined(RK_SDMMC_BOOT_EN) || defined(RK_SDHCI_BOOT_EN)
	&emmcFunOp,
#endif

#ifdef RK_FLASH_BOOT_EN
	&NandFunOp,
#endif

#ifdef CONFIG_RK_NVME_BOOT_EN
	&nvmeFunOp,
#endif
};

最后被StorageInit调用:

#define MAX_MEM_DEV	(sizeof(memFunTab)/sizeof(MEM_FUN_T *))


int32 StorageInit(void)
{
	uint32 memdev;

	memset((uint8*)&g_FlashInfo, 0, sizeof(g_FlashInfo));
	for(memdev=0; memdev<MAX_MEM_DEV; memdev++)
	{
		gpMemFun = memFunTab[memdev];
		if(memFunTab[memdev]->Init(memFunTab[memdev]->id) == 0)
		{
			memFunTab[memdev]->Valid = 1;
			StorageReadFlashInfo((uint8*)&g_FlashInfo);
			vendor_storage_init();
			return 0;
		}
	}

	/* if all media init error, usding null function */
	gpMemFun = &nullFunOp;

	return -1;
}

然后被在RK的板级逻辑u-boot/board/rockchip/rk32xx/rk32xx.c中的board_storage_init调用

int board_storage_init(void)
{
	int ret = 0;

	if (StorageInit() == 0) {
		printf("storage init OK!\n");
		ret = 0;
	} else {
		printf("storage init fail!\n");
		ret = -1;
	}

	return ret;
}

board_storage_init又在u-boot/arch/arm/lib/board.cuboot启动阶段被调用:


/************************************************************************
 *
 * This is the next part if the initialization sequence: we are now
 * running from RAM and have a "normal" C environment, i. e. global
 * data can be written, BSS has been cleared, the stack size in not
 * that critical any more, etc.
 *
 ************************************************************************
 */

void board_init_r(gd_t *id, ulong dest_addr)
{
	ulong malloc_start;
#if !defined(CONFIG_SYS_NO_FLASH)
	ulong flash_size;
#endif

	.....

#ifdef CONFIG_ROCKCHIP
	board_storage_init();//这里调用的
#endif

	.....
	
#ifdef CONFIG_BOARD_LATE_INIT
	board_late_init();
#endif
	.....
	/* main_loop() can return to retry autoboot, if so just run it again. */
	for (;;) {
		main_loop();
	}

	/* NOTREACHED - no way out of command loop except booting */
}

然后来到uboot最靠前的汇编s文件u-boot/arch/arm/lib/crt0.S里,调用了board_init_r这个C函数:


/* Set up final (full) environment */

	bl	c_runtime_cpu_setup	/* we still call old routine here */

	ldr	r0, =__bss_start	/* this is auto-relocated! */
	ldr	r1, =__bss_end		/* this is auto-relocated! */

	mov	r2, #0x00000000		/* prepare zero to clear BSS */

clbss_l:cmp	r0, r1			/* while not at end of BSS */
	strlo	r2, [r0]		/* clear 32-bit BSS word */
	addlo	r0, r0, #4		/* move to next */
	blo	clbss_l

	bl coloured_LED_init
	bl red_led_on

	/* call board_init_r(gd_t *id, ulong dest_addr) */
	mov     r0, r9                  /* gd_t */
	ldr	r1, [r9, #GD_RELOCADDR]	/* dest_addr */
	/* call board_init_r */
	ldr	pc, =board_init_r	/* this is auto-relocated! */

	/* we should not return here. */

#endif

ENDPROC(_main)

四,总结

uboot在启动时,从eMMC某块区域读取了一定字节大小的数据,根据芯片厂商定义的偏移地址取出一组sn号,然后再用这串sn号以“androidboot.serialno=”前缀设进cmdline参数里,在启动kernel时传入,然后kernel将收到的cmdline数据写入到/proc/cmdline里,接着启动系统的第一个程序init程序,init程序从/proc/cmdline读出对应的“androidboot.serialno“数据以“ro.boot.serialno”名字设置属性,然后drmserviceinit程序设置的"ro.boot.serialno"属性来设置“ro.serialno,最后系统通过getprop ro.serialno来获取,APP通过Build.getSerial()Build.SERIAL来获取。

至此,大功告成

end

感谢阅读~

希望能帮到你~

see you~

码字不易,转载请注明原作者 ~ (from:https://erdong.work

posted @ 2023-02-24 19:34  耳东Sir  阅读(2371)  评论(0编辑  收藏  举报