一、MQ应用场景
- 应用解耦:系统的耦合性越高,容错性就越低。
- 流量消峰:应用系统如果遇到系统请求流量的瞬间猛增,有可能会将系统压垮。有了消息队列可以将大量请求缓存起来,分散到很长一段时间处理,这样可以大大提到系统的稳定性和用户体验。
- 数据分发:通过消息队列可以让数据在多个系统更加之间进行流通。数据的产生方不需要关心谁来使用数据,只需要将数据发送到消息队列,数据使用方直接在消息队列中直接获取数据即可。
二、集群搭建
2.1 角色介绍
- Producer:消息的发送者;举例:发信者
- Consumer:消息接收者;举例:收信者
- Broker:暂存和传输消息;举例:邮局
- NameServer:管理Broker;举例:各个邮局的管理机构
- Topic:区分消息的种类;一个发送者可以发送消息给一个或者多个Topic;一个消息的接收者可以订阅一个或者多个Topic消息
- Message Queue:相当于是Topic的分区;用于并行发送和接收消息
2.2 集群特点
-
NameServer是一个几乎无状态节点,可集群部署,节点之间无任何信息同步。
-
Broker部署相对复杂,Broker分为Master与Slave,一个Master可以对应多个Slave,但是一个Slave只能对应一个Master,Master与Slave的对应关系通过指定相同的BrokerName,不同的BrokerId来定义,BrokerId为0表示Master,非0表示Slave。Master也可以部署多个。每个Broker与NameServer集群中的所有节点建立长连接,定时注册Topic信息到所有NameServer。
-
Producer与NameServer集群中的其中一个节点(随机选择)建立长连接,定期从NameServer取Topic路由信息,并向提供Topic服务的Master建立长连接,且定时向Master发送心跳。Producer完全无状态,可集群部署。
-
Consumer与NameServer集群中的其中一个节点(随机选择)建立长连接,定期从NameServer取Topic路由信息,并向提供Topic服务的Master、Slave建立长连接,且定时向Master、Slave发送心跳。Consumer既可以从Master订阅消息,也可以从Slave订阅消息,订阅规则由Broker配置决定。
2.3 集群模式
1)单Master模式
这种方式风险较大,一旦Broker重启或者宕机时,会导致整个服务不可用。不建议线上环境使用,可以用于本地测试。
2)多Master模式
一个集群无Slave,全是Master,例如2个Master或者3个Master,这种模式的优缺点如下:
- 优点:配置简单,单个Master宕机或重启维护对应用无影响,在磁盘配置为RAID10时,即使机器宕机不可恢复情况下,由于RAID10磁盘非常可靠,消息也不会丢(异步刷盘丢失少量消息,同步刷盘一条不丢),性能最高;
- 缺点:单台机器宕机期间,这台机器上未被消费的消息在机器恢复之前不可订阅,消息实时性会受到影响。
3)多Master多Slave模式(异步)
每个Master配置一个Slave,有多对Master-Slave,HA采用异步复制方式,主备有短暂消息延迟(毫秒级),这种模式的优缺点如下:
- 优点:即使磁盘损坏,消息丢失的非常少,且消息实时性不会受影响,同时Master宕机后,消费者仍然可以从Slave消费,且此过程对应用透明,不需人工干预,性能同多Master模式几乎一样;
- 缺点:Master宕机,磁盘损坏情况下会丢失少量消息。
4)多Master多Slave模式(同步)
每个Master配置一个Slave,有多对Master-Slave,HA采用同步双写方式,即只有主备都写成功,才向应用返回成功,这种模式的优缺点如下:
- 优点:数据与服务都无单点故障,Master宕机情况下,消息无延迟,服务可用性与数据可用性都非常高;
- 缺点:性能比异步复制模式略低(大约低10%左右),发送单个消息的RT会略高,且目前版本在主节点宕机后,备机不能自动切换为主机。
2.4 双主双从集群搭建
|
2.4.1 服务器环境
2.4.2 配置hosts
vim /etc/hosts
配置如下:
# nameserver 192.168.25.135 rocketmq-nameserver1 192.168.25.138 rocketmq-nameserver2 # broker 192.168.25.135 rocketmq-master1 192.168.25.135 rocketmq-slave2 192.168.25.138 rocketmq-master2 192.168.25.138 rocketmq-slave1
2.4.3 配置防火墙
nameserver
默认使用 9876 端口master
默认使用 10911 端口slave
默认使用11011 端口
2.4.4 配置环境变量
vim /etc/profile
末尾添加:
ROCKETMQ_HOME=/usr/local/rocketmq/rocketmq-all-4.4.0-bin-release PATH=$PATH:$ROCKETMQ_HOME/bin export ROCKETMQ_HOME PATH
立即生效:
source /etc/profile
2.4.5 创建消息存储路径
mkdir /usr/local/rocketmq/store mkdir /usr/local/rocketmq/store/commitlog mkdir /usr/local/rocketmq/store/consumequeue mkdir /usr/local/rocketmq/store/index
2.4.6 broker配置文件
#master1 服务器:192.168.25.135 vi /usr/soft/rocketmq/conf/2m-2s-sync/broker-a.properties
#所属集群名字 brokerClusterName=rocketmq-cluster #broker名字,注意此处不同的配置文件填写的不一样 brokerName=broker-a #0 表示 Master,>0 表示 Slave brokerId=0 #nameServer地址,分号分割 namesrvAddr=rocketmq-nameserver1:9876;rocketmq-nameserver2:9876 #在发送消息时,自动创建服务器不存在的topic,默认创建的队列数 defaultTopicQueueNums=4 #是否允许 Broker 自动创建Topic,建议线下开启,线上关闭 autoCreateTopicEnable=true #是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭 autoCreateSubscriptionGroup=true #Broker 对外服务的监听端口 listenPort=10911 #删除文件时间点,默认凌晨 4点 deleteWhen=04 #文件保留时间,默认 48 小时 fileReservedTime=120 #commitLog每个文件的大小默认1G mapedFileSizeCommitLog=1073741824 #ConsumeQueue每个文件默认存30W条,根据业务情况调整 mapedFileSizeConsumeQueue=300000 #destroyMapedFileIntervalForcibly=120000 #redeleteHangedFileInterval=120000 #检测物理文件磁盘空间 diskMaxUsedSpaceRatio=88 #存储路径 storePathRootDir=/usr/local/rocketmq/store #commitLog 存储路径 storePathCommitLog=/usr/local/rocketmq/store/commitlog #消费队列存储路径存储路径 storePathConsumeQueue=/usr/local/rocketmq/store/consumequeue #消息索引存储路径 storePathIndex=/usr/local/rocketmq/store/index #checkpoint 文件存储路径 storeCheckpoint=/usr/local/rocketmq/store/checkpoint #abort 文件存储路径 abortFile=/usr/local/rocketmq/store/abort #限制的消息大小 maxMessageSize=65536 #flushCommitLogLeastPages=4 #flushConsumeQueueLeastPages=2 #flushCommitLogThoroughInterval=10000 #flushConsumeQueueThoroughInterval=60000 #Broker 的角色 #- ASYNC_MASTER 异步复制Master #- SYNC_MASTER 同步双写Master #- SLAVE brokerRole=SYNC_MASTER #刷盘方式 #- ASYNC_FLUSH 异步刷盘 #- SYNC_FLUSH 同步刷盘 flushDiskType=SYNC_FLUSH #checkTransactionMessageEnable=false #发消息线程池数量 #sendMessageThreadPoolNums=128 #拉消息线程池数量 #pullMessageThreadPoolNums=128
#slave2 服务器:192.168.25.135 vi /usr/soft/rocketmq/conf/2m-2s-sync/broker-b-s.properties
#所属集群名字 brokerClusterName=rocketmq-cluster #broker名字,注意此处不同的配置文件填写的不一样 brokerName=broker-b #0 表示 Master,>0 表示 Slave brokerId=1 #nameServer地址,分号分割 namesrvAddr=rocketmq-nameserver1:9876;rocketmq-nameserver2:9876 #在发送消息时,自动创建服务器不存在的topic,默认创建的队列数 defaultTopicQueueNums=4 #是否允许 Broker 自动创建Topic,建议线下开启,线上关闭 autoCreateTopicEnable=true #是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭 autoCreateSubscriptionGroup=true #Broker 对外服务的监听端口 listenPort=11011 #删除文件时间点,默认凌晨 4点 deleteWhen=04 #文件保留时间,默认 48 小时 fileReservedTime=120 #commitLog每个文件的大小默认1G mapedFileSizeCommitLog=1073741824 #ConsumeQueue每个文件默认存30W条,根据业务情况调整 mapedFileSizeConsumeQueue=300000 #destroyMapedFileIntervalForcibly=120000 #redeleteHangedFileInterval=120000 #检测物理文件磁盘空间 diskMaxUsedSpaceRatio=88 #存储路径 storePathRootDir=/usr/local/rocketmq/store #commitLog 存储路径 storePathCommitLog=/usr/local/rocketmq/store/commitlog #消费队列存储路径存储路径 storePathConsumeQueue=/usr/local/rocketmq/store/consumequeue #消息索引存储路径 storePathIndex=/usr/local/rocketmq/store/index #checkpoint 文件存储路径 storeCheckpoint=/usr/local/rocketmq/store/checkpoint #abort 文件存储路径 abortFile=/usr/local/rocketmq/store/abort #限制的消息大小 maxMessageSize=65536 #flushCommitLogLeastPages=4 #flushConsumeQueueLeastPages=2 #flushCommitLogThoroughInterval=10000 #flushConsumeQueueThoroughInterval=60000 #Broker 的角色 #- ASYNC_MASTER 异步复制Master #- SYNC_MASTER 同步双写Master #- SLAVE brokerRole=SLAVE #刷盘方式 #- ASYNC_FLUSH 异步刷盘 #- SYNC_FLUSH 同步刷盘 flushDiskType=ASYNC_FLUSH #checkTransactionMessageEnable=false #发消息线程池数量 #sendMessageThreadPoolNums=128 #拉消息线程池数量 #pullMessageThreadPoolNums=128
#master2 服务器:192.168.25.138 vi /usr/soft/rocketmq/conf/2m-2s-sync/broker-b.properties
#所属集群名字 brokerClusterName=rocketmq-cluster #broker名字,注意此处不同的配置文件填写的不一样 brokerName=broker-b #0 表示 Master,>0 表示 Slave brokerId=0 #nameServer地址,分号分割 namesrvAddr=rocketmq-nameserver1:9876;rocketmq-nameserver2:9876 #在发送消息时,自动创建服务器不存在的topic,默认创建的队列数 defaultTopicQueueNums=4 #是否允许 Broker 自动创建Topic,建议线下开启,线上关闭 autoCreateTopicEnable=true #是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭 autoCreateSubscriptionGroup=true #Broker 对外服务的监听端口 listenPort=10911 #删除文件时间点,默认凌晨 4点 deleteWhen=04 #文件保留时间,默认 48 小时 fileReservedTime=120 #commitLog每个文件的大小默认1G mapedFileSizeCommitLog=1073741824 #ConsumeQueue每个文件默认存30W条,根据业务情况调整 mapedFileSizeConsumeQueue=300000 #destroyMapedFileIntervalForcibly=120000 #redeleteHangedFileInterval=120000 #检测物理文件磁盘空间 diskMaxUsedSpaceRatio=88 #存储路径 storePathRootDir=/usr/local/rocketmq/store #commitLog 存储路径 storePathCommitLog=/usr/local/rocketmq/store/commitlog #消费队列存储路径存储路径 storePathConsumeQueue=/usr/local/rocketmq/store/consumequeue #消息索引存储路径 storePathIndex=/usr/local/rocketmq/store/index #checkpoint 文件存储路径 storeCheckpoint=/usr/local/rocketmq/store/checkpoint #abort 文件存储路径 abortFile=/usr/local/rocketmq/store/abort #限制的消息大小 maxMessageSize=65536 #flushCommitLogLeastPages=4 #flushConsumeQueueLeastPages=2 #flushCommitLogThoroughInterval=10000 #flushConsumeQueueThoroughInterval=60000 #Broker 的角色 #- ASYNC_MASTER 异步复制Master #- SYNC_MASTER 同步双写Master #- SLAVE brokerRole=SYNC_MASTER #刷盘方式 #- ASYNC_FLUSH 异步刷盘 #- SYNC_FLUSH 同步刷盘 flushDiskType=SYNC_FLUSH #checkTransactionMessageEnable=false #发消息线程池数量 #sendMessageThreadPoolNums=128 #拉消息线程池数量 #pullMessageThreadPoolNums=128
#slave1 服务器:192.168.25.138 vi /usr/soft/rocketmq/conf/2m-2s-sync/broker-a-s.properties
#所属集群名字 brokerClusterName=rocketmq-cluster #broker名字,注意此处不同的配置文件填写的不一样 brokerName=broker-a #0 表示 Master,>0 表示 Slave brokerId=1 #nameServer地址,分号分割 namesrvAddr=rocketmq-nameserver1:9876;rocketmq-nameserver2:9876 #在发送消息时,自动创建服务器不存在的topic,默认创建的队列数 defaultTopicQueueNums=4 #是否允许 Broker 自动创建Topic,建议线下开启,线上关闭 autoCreateTopicEnable=true #是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭 autoCreateSubscriptionGroup=true #Broker 对外服务的监听端口 listenPort=11011 #删除文件时间点,默认凌晨 4点 deleteWhen=04 #文件保留时间,默认 48 小时 fileReservedTime=120 #commitLog每个文件的大小默认1G mapedFileSizeCommitLog=1073741824 #ConsumeQueue每个文件默认存30W条,根据业务情况调整 mapedFileSizeConsumeQueue=300000 #destroyMapedFileIntervalForcibly=120000 #redeleteHangedFileInterval=120000 #检测物理文件磁盘空间 diskMaxUsedSpaceRatio=88 #存储路径 storePathRootDir=/usr/local/rocketmq/store #commitLog 存储路径 storePathCommitLog=/usr/local/rocketmq/store/commitlog #消费队列存储路径存储路径 storePathConsumeQueue=/usr/local/rocketmq/store/consumequeue #消息索引存储路径 storePathIndex=/usr/local/rocketmq/store/index #checkpoint 文件存储路径 storeCheckpoint=/usr/local/rocketmq/store/checkpoint #abort 文件存储路径 abortFile=/usr/local/rocketmq/store/abort #限制的消息大小 maxMessageSize=65536 #flushCommitLogLeastPages=4 #flushConsumeQueueLeastPages=2 #flushCommitLogThoroughInterval=10000 #flushConsumeQueueThoroughInterval=60000 #Broker 的角色 #- ASYNC_MASTER 异步复制Master #- SYNC_MASTER 同步双写Master #- SLAVE brokerRole=SLAVE #刷盘方式 #- ASYNC_FLUSH 异步刷盘 #- SYNC_FLUSH 同步刷盘 flushDiskType=ASYNC_FLUSH #checkTransactionMessageEnable=false #发消息线程池数量 #sendMessageThreadPoolNums=128 #拉消息线程池数量 #pullMessageThreadPoolNums=128
2.4.7 修改启动脚本
vi /usr/local/rocketmq/bin/runbroker.sh
需要根据内存大小进行适当的对JVM参数进行调整:
# 开发环境配置 JVM Configuration JAVA_OPT="${JAVA_OPT} -server -Xms256m -Xmx256m -Xmn128m"
vim /usr/local/rocketmq/bin/runserver.sh
需要根据内存大小进行适当的对JVM参数进行调整:
JAVA_OPT="${JAVA_OPT} -server -Xms256m -Xmx256m -Xmn128m -XX:MetaspaceSize=128m -XX:MaxMetaspaceSize=320m"
2.4.8 启动服务
1)启动NameServe集群
分别在192.168.25.135和192.168.25.138启动NameServer
cd /usr/local/rocketmq/bin
nohup sh mqnamesrv &
2)启动Broker集群
- 在192.168.25.135上启动master1和slave2
master1:
cd /usr/local/rocketmq/bin
nohup sh mqbroker -c /usr/local/rocketmq/conf/2m-2s-syncbroker-a.properties &
slave2:
cd /usr/local/rocketmq/bin
nohup sh mqbroker -c /usr/local/rocketmq/conf/2m-2s-sync/broker-b-s.properties &
- 在192.168.25.138上启动master2和slave2
master2
cd /usr/local/rocketmq/bin
nohup sh mqbroker -c /usr/local/rocketmq/conf/2m-2s-sync/broker-b.properties &
slave1
cd /usr/local/rocketmq/bin
nohup sh mqbroker -c /usr/local/rocketmq/conf/2m-2s-sync/broker-a-s.properties &
2.4.9 查看进程状态&日志
jps # 查看nameServer日志 tail -500f ~/logs/rocketmqlogs/namesrv.log # 查看broker日志 tail -500f ~/logs/rocketmqlogs/broker.log
三、消息发送&消费
消息发送步骤:
1.创建消息生产者producer,并制定生产者组名 2.指定Nameserver地址 3.启动producer 4.创建消息对象,指定主题Topic、Tag和消息体 5.发送消息 6.关闭生产者producer
消息消费步骤:
1.创建消费者Consumer,制定消费者组名 2.指定Nameserver地址 3.订阅主题Topic和Tag 4.设置回调函数,处理消息 5.启动消费者consumer
3.1 基本样例
3.1.1 消息发送
1)发送同步消息:这种可靠性同步地发送方式使用的比较广泛,比如:重要的消息通知,短信通知。
public class SyncProducer { public static void main(String[] args) throws Exception { // 实例化消息生产者Producer DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name"); // 设置NameServer的地址 producer.setNamesrvAddr("localhost:9876"); // 启动Producer实例 producer.start(); for (int i = 0; i < 100; i++) { // 创建消息,并指定Topic,Tag和消息体 Message msg = new Message("TopicTest" /* Topic */, "TagA" /* Tag */, ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */ ); // 发送消息到一个Broker SendResult sendResult = producer.send(msg); // 通过sendResult返回消息是否成功送达 System.out.printf("%s%n", sendResult); } // 如果不再发送消息,关闭Producer实例。 producer.shutdown(); } }
2)发送异步消息:异步消息通常用在对响应时间敏感的业务场景,即发送端不能容忍长时间地等待Broker的响应。
public class AsyncProducer { public static void main(String[] args) throws Exception { // 实例化消息生产者Producer DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name"); // 设置NameServer的地址 producer.setNamesrvAddr("localhost:9876"); // 启动Producer实例 producer.start(); producer.setRetryTimesWhenSendAsyncFailed(0); for (int i = 0; i < 100; i++) { final int index = i; // 创建消息,并指定Topic,Tag和消息体 Message msg = new Message("TopicTest", "TagA", "OrderID188", "Hello world".getBytes(RemotingHelper.DEFAULT_CHARSET)); // SendCallback接收异步返回结果的回调 producer.send(msg, new SendCallback() { @Override public void onSuccess(SendResult sendResult) { System.out.printf("%-10d OK %s %n", index, sendResult.getMsgId()); } @Override public void onException(Throwable e) { System.out.printf("%-10d Exception %s %n", index, e); e.printStackTrace(); } }); } // 如果不再发送消息,关闭Producer实例。 producer.shutdown(); } }
3)单向发送消息:这种方式主要用在不特别关心发送结果的场景,例如日志发送。
public class OnewayProducer { public static void main(String[] args) throws Exception{ // 实例化消息生产者Producer DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name"); // 设置NameServer的地址 producer.setNamesrvAddr("localhost:9876"); // 启动Producer实例 producer.start(); for (int i = 0; i < 100; i++) { // 创建消息,并指定Topic,Tag和消息体 Message msg = new Message("TopicTest" /* Topic */, "TagA" /* Tag */, ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */ ); // 发送单向消息,没有任何返回结果 producer.sendOneway(msg); } // 如果不再发送消息,关闭Producer实例。 producer.shutdown(); } }
3.1.2 消息消费
1)负载均衡模式:消费者采用负载均衡方式消费消息,多个消费者共同消费队列消息,每个消费者处理的消息不同
public static void main(String[] args) throws Exception { // 实例化消息生产者,指定组名 DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("group1"); // 指定Namesrv地址信息. consumer.setNamesrvAddr("localhost:9876"); // 订阅Topic consumer.subscribe("Test", "*"); //负载均衡模式消费 consumer.setMessageModel(MessageModel.CLUSTERING); // 注册回调函数,处理消息 consumer.registerMessageListener(new MessageListenerConcurrently() { @Override public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) { System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs); return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; } }); //启动消息者 consumer.start(); System.out.printf("Consumer Started.%n"); }
2)广播模式:消费者采用广播的方式消费消息,每个消费者消费的消息都是相同的
public static void main(String[] args) throws Exception { // 实例化消息生产者,指定组名 DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("group1"); // 指定Namesrv地址信息. consumer.setNamesrvAddr("localhost:9876"); // 订阅Topic consumer.subscribe("Test", "*"); //广播模式消费 consumer.setMessageModel(MessageModel.BROADCASTING); // 注册回调函数,处理消息 consumer.registerMessageListener(new MessageListenerConcurrently() { @Override public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) { System.out.printf("%s Receive New Messages: %s %n", Thread.currentThread().getName(), msgs); return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; } }); //启动消息者 consumer.start(); System.out.printf("Consumer Started.%n"); }
3.2 顺序消息
消息有序指的是可以按照消息的发送顺序来消费(FIFO)。RocketMQ可以严格的保证消息有序,可以分为分区有序或者全局有序。
顺序消费的原理解析,在默认的情况下消息发送会采取Round Robin轮询方式把消息发送到不同的queue(分区队列);而消费消息的时候从多个queue上拉取消息,这种情况发送和消费是不能保证顺序。但是如果控制发送的顺序消息只依次发送到同一个queue中,消费的时候只从这个queue上依次拉取,则就保证了顺序。当发送和消费参与的queue只有一个,则是全局有序;如果多个queue参与,则为分区有序,即相对每个queue,消息都是有序的。
下面用订单进行分区有序的示例。一个订单的顺序流程是:创建、付款、推送、完成。订单号相同的消息会被先后发送到同一个队列中,消费时,同一个OrderId获取到的肯定是同一个队列。
3.2.1 顺序消息生产
/** * Producer,发送顺序消息 */ public class Producer { public static void main(String[] args) throws Exception { DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name"); producer.setNamesrvAddr("127.0.0.1:9876"); producer.start(); String[] tags = new String[]{"TagA", "TagC", "TagD"}; // 订单列表 List<OrderStep> orderList = new Producer().buildOrders(); Date date = new Date(); SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); String dateStr = sdf.format(date); for (int i = 0; i < 10; i++) { // 加个时间前缀 String body = dateStr + " Hello RocketMQ " + orderList.get(i); Message msg = new Message("TopicTest", tags[i % tags.length], "KEY" + i, body.getBytes()); SendResult sendResult = producer.send(msg, new MessageQueueSelector() { @Override public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) { Long id = (Long) arg; //根据订单id选择发送queue long index = id % mqs.size(); return mqs.get((int) index); } }, orderList.get(i).getOrderId());//订单id System.out.println(String.format("SendResult status:%s, queueId:%d, body:%s", sendResult.getSendStatus(), sendResult.getMessageQueue().getQueueId(), body)); } producer.shutdown(); } /** * 订单的步骤 */ private static class OrderStep { private long orderId; private String desc; public long getOrderId() { return orderId; } public void setOrderId(long orderId) { this.orderId = orderId; } public String getDesc() { return desc; } public void setDesc(String desc) { this.desc = desc; } @Override public String toString() { return "OrderStep{" + "orderId=" + orderId + ", desc='" + desc + '\'' + '}'; } } /** * 生成模拟订单数据 */ private List<OrderStep> buildOrders() { List<OrderStep> orderList = new ArrayList<OrderStep>(); OrderStep orderDemo = new OrderStep(); orderDemo.setOrderId(15103111039L); orderDemo.setDesc("创建"); orderList.add(orderDemo); orderDemo = new OrderStep(); orderDemo.setOrderId(15103111065L); orderDemo.setDesc("创建"); orderList.add(orderDemo); orderDemo = new OrderStep(); orderDemo.setOrderId(15103111039L); orderDemo.setDesc("付款"); orderList.add(orderDemo); orderDemo = new OrderStep(); orderDemo.setOrderId(15103117235L); orderDemo.setDesc("创建"); orderList.add(orderDemo); orderDemo = new OrderStep(); orderDemo.setOrderId(15103111065L); orderDemo.setDesc("付款"); orderList.add(orderDemo); orderDemo = new OrderStep(); orderDemo.setOrderId(15103117235L); orderDemo.setDesc("付款"); orderList.add(orderDemo); orderDemo = new OrderStep(); orderDemo.setOrderId(15103111065L); orderDemo.setDesc("完成"); orderList.add(orderDemo); orderDemo = new OrderStep(); orderDemo.setOrderId(15103111039L); orderDemo.setDesc("推送"); orderList.add(orderDemo); orderDemo = new OrderStep(); orderDemo.setOrderId(15103117235L); orderDemo.setDesc("完成"); orderList.add(orderDemo); orderDemo = new OrderStep(); orderDemo.setOrderId(15103111039L); orderDemo.setDesc("完成"); orderList.add(orderDemo); return orderList; } }
3.2.2 顺序消息消费
/** * 顺序消息消费,带事务方式(应用可控制Offset什么时候提交) */ public class ConsumerInOrder { public static void main(String[] args) throws Exception { DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name_3"); consumer.setNamesrvAddr("127.0.0.1:9876"); /** * 设置Consumer第一次启动是从队列头部开始消费还是队列尾部开始消费<br> * 如果非第一次启动,那么按照上次消费的位置继续消费 */ consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET); consumer.subscribe("TopicTest", "TagA || TagC || TagD"); consumer.registerMessageListener(new MessageListenerOrderly() { Random random = new Random(); @Override public ConsumeOrderlyStatus consumeMessage(List<MessageExt> msgs, ConsumeOrderlyContext context) { context.setAutoCommit(true); for (MessageExt msg : msgs) { // 可以看到每个queue有唯一的consume线程来消费, 订单对每个queue(分区)有序 System.out.println("consumeThread=" + Thread.currentThread().getName() + "queueId=" + msg.getQueueId() + ", content:" + new String(msg.getBody())); } try { //模拟业务逻辑处理中... TimeUnit.SECONDS.sleep(random.nextInt(10)); } catch (Exception e) { e.printStackTrace(); } return ConsumeOrderlyStatus.SUCCESS; } }); consumer.start(); System.out.println("Consumer Started."); } }
3.3 延迟消息
比如电商里,提交了一个订单就可以发送一个延时消息,1h后去检查这个订单的状态,如果还是未付款就取消订单释放库存。
3.3.1 发送延迟消息
public class ScheduledMessageProducer { public static void main(String[] args) throws Exception { // 实例化一个生产者来产生延时消息 DefaultMQProducer producer = new DefaultMQProducer("ExampleProducerGroup"); // 启动生产者 producer.start(); int totalMessagesToSend = 100; for (int i = 0; i < totalMessagesToSend; i++) { Message message = new Message("TestTopic", ("Hello scheduled message " + i).getBytes()); // 设置延时等级3,这个消息将在10s之后发送(现在只支持固定的几个时间,详看delayTimeLevel) message.setDelayTimeLevel(3); // 发送消息 producer.send(message); } // 关闭生产者 producer.shutdown(); } }
3.3.2 启动消费者
public class ScheduledMessageConsumer { public static void main(String[] args) throws Exception { // 实例化消费者 DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("ExampleConsumer"); // 订阅Topics consumer.subscribe("TestTopic", "*"); // 注册消息监听者 consumer.registerMessageListener(new MessageListenerConcurrently() { @Override public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> messages, ConsumeConcurrentlyContext context) { for (MessageExt message : messages) { // Print approximate delay time period System.out.println("Receive message[msgId=" + message.getMsgId() + "] " + (System.currentTimeMillis() - message.getStoreTimestamp()) + "ms later"); } return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; } }); // 启动消费者 consumer.start(); } }
private String messageDelayLevel = "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h"; #现在RocketMq并不支持任意时间的延时,需要设置几个固定的延时等级,从1s到2h分别对应着等级1到18
3.4 批量消息
批量发送消息能显著提高传递小消息的性能。限制是这些批量消息应该有相同的topic,相同的waitStoreMsgOK,而且不能是延时消息。此外,这一批消息的总大小不应超过4MB。
3.4.1 发送批量消息
String topic = "BatchTest"; List<Message> messages = new ArrayList<>(); messages.add(new Message(topic, "TagA", "OrderID001", "Hello world 0".getBytes())); messages.add(new Message(topic, "TagA", "OrderID002", "Hello world 1".getBytes())); messages.add(new Message(topic, "TagA", "OrderID003", "Hello world 2".getBytes())); try { producer.send(messages); } catch (Exception e) { e.printStackTrace(); //处理error }
public class ListSplitter implements Iterator<List<Message>> { private final int SIZE_LIMIT = 1024 * 1024 * 4; private final List<Message> messages; private int currIndex; public ListSplitter(List<Message> messages) { this.messages = messages; } @Override public boolean hasNext() { return currIndex < messages.size(); } @Override public List<Message> next() { int nextIndex = currIndex; int totalSize = 0; for (; nextIndex < messages.size(); nextIndex++) { Message message = messages.get(nextIndex); int tmpSize = message.getTopic().length() + message.getBody().length; Map<String, String> properties = message.getProperties(); for (Map.Entry<String, String> entry : properties.entrySet()) { tmpSize += entry.getKey().length() + entry.getValue().length(); } tmpSize = tmpSize + 20; // 增加日志的开销20字节 if (tmpSize > SIZE_LIMIT) { //单个消息超过了最大的限制 //忽略,否则会阻塞分裂的进程 if (nextIndex - currIndex == 0) { //假如下一个子列表没有元素,则添加这个子列表然后退出循环,否则只是退出循环 nextIndex++; } break; } if (tmpSize + totalSize > SIZE_LIMIT) { break; } else { totalSize += tmpSize; } } List<Message> subList = messages.subList(currIndex, nextIndex); currIndex = nextIndex; return subList; } } //把大的消息分裂成若干个小的消息 ListSplitter splitter = new ListSplitter(messages); while (splitter.hasNext()) { try { List<Message> listItem = splitter.next(); producer.send(listItem); } catch (Exception e) { e.printStackTrace(); //处理error } }
3.5 过滤消息
在大多数情况下,TAG是一个简单而有用的设计,其可以来选择您想要的消息。例如:
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("CID_EXAMPLE"); consumer.subscribe("TOPIC", "TAGA || TAGB || TAGC");
消费者将接收包含TAGA或TAGB或TAGC的消息。但是限制是一个消息只能有一个标签,这对于复杂的场景可能不起作用。在这种情况下,可以使用SQL表达式筛选消息。SQL特性可以通过发送消息时的属性来进行计算。在RocketMQ定义的语法下,可以实现一些简单的逻辑。下面是一个例子:
3.5.1 sql基本语法
RocketMQ只定义了一些基本语法来支持这个特性。你也可以很容易地扩展它。
- 数值比较,比如:>,>=,<,<=,BETWEEN,=;
- 字符比较,比如:=,<>,IN;
- IS NULL 或者 IS NOT NULL;
- 逻辑符号 AND,OR,NOT;
常量支持类型为:
- 数值,比如:123,3.1415;
- 字符,比如:'abc',必须用单引号包裹起来;
- NULL,特殊的常量
- 布尔值,TRUE 或 FALSE
只有使用push模式的消费者才能用使用SQL92标准的sql语句,接口如下:
public void subscribe(finalString topic, final MessageSelector messageSelector)
3.5.2 消息生产者
发送消息时,你能通过putUserProperty
来设置消息的属性
DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name"); producer.start(); Message msg = new Message("TopicTest", tag, ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET) ); // 设置一些属性 msg.putUserProperty("a", String.valueOf(i)); SendResult sendResult = producer.send(msg); producer.shutdown();
3.5.3 消息消费者
用MessageSelector.bySql来使用sql筛选消息
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name_4"); // 只有订阅的消息有这个属性a, a >=0 and a <= 3 consumer.subscribe("TopicTest", MessageSelector.bySql("a between 0 and 3"); consumer.registerMessageListener(new MessageListenerConcurrently() { @Override public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs, ConsumeConcurrentlyContext context) { return ConsumeConcurrentlyStatus.CONSUME_SUCCESS; } }); consumer.start();
3.6 事务消息
1)事务消息发送及提交
(1) 发送消息(half消息)。
(2) 服务端响应消息写入结果。
(3) 根据发送结果执行本地事务(如果写入失败,此时half消息对业务不可见,本地逻辑不执行)。
(4) 根据本地事务状态执行Commit或者Rollback(Commit操作生成消息索引,消息对消费者可见)
2)事务补偿
(1) 对没有Commit/Rollback的事务消息(pending状态的消息),从服务端发起一次“回查”
(2) Producer收到回查消息,检查回查消息对应的本地事务的状态
(3) 根据本地事务状态,重新Commit或者Rollback
其中,补偿阶段用于解决消息Commit或者Rollback发生超时或者失败的情况。
3)事务消息状态
事务消息共有三种状态,提交状态、回滚状态、中间状态:
- TransactionStatus.CommitTransaction: 提交事务,它允许消费者消费此消息。
- TransactionStatus.RollbackTransaction: 回滚事务,它代表该消息将被删除,不允许被消费。
- TransactionStatus.Unknown: 中间状态,它代表需要检查消息队列来确定状态。
4.6.1 发送事务消息
1) 创建事务性生产者
使用 TransactionMQProducer
类创建生产者,并指定唯一的 ProducerGroup
,就可以设置自定义线程池来处理这些检查请求。执行本地事务后、需要根据执行结果对消息队列进行回复。回传的事务状态在请参考前一节。
public class Producer { public static void main(String[] args) throws MQClientException, InterruptedException { //创建事务监听器 TransactionListener transactionListener = new TransactionListenerImpl(); //创建消息生产者 TransactionMQProducer producer = new TransactionMQProducer("group6"); producer.setNamesrvAddr("192.168.25.135:9876;192.168.25.138:9876"); //生产者这是监听器 producer.setTransactionListener(transactionListener); //启动消息生产者 producer.start(); String[] tags = new String[]{"TagA", "TagB", "TagC"}; for (int i = 0; i < 3; i++) { try { Message msg = new Message("TransactionTopic", tags[i % tags.length], "KEY" + i, ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET)); SendResult sendResult = producer.sendMessageInTransaction(msg, null); System.out.printf("%s%n", sendResult); TimeUnit.SECONDS.sleep(1); } catch (MQClientException | UnsupportedEncodingException e) { e.printStackTrace(); } } //producer.shutdown(); } }
2)实现事务的监听接口
当发送半消息成功时,我们使用 executeLocalTransaction
方法来执行本地事务。它返回前一节中提到的三个事务状态之一。checkLocalTranscation
方法用于检查本地事务状态,并回应消息队列的检查请求。它也是返回前一节中提到的三个事务状态之一。
public class TransactionListenerImpl implements TransactionListener { @Override public LocalTransactionState executeLocalTransaction(Message msg, Object arg) { System.out.println("执行本地事务"); if (StringUtils.equals("TagA", msg.getTags())) { return LocalTransactionState.COMMIT_MESSAGE; } else if (StringUtils.equals("TagB", msg.getTags())) { return LocalTransactionState.ROLLBACK_MESSAGE; } else { return LocalTransactionState.UNKNOW; } } @Override public LocalTransactionState checkLocalTransaction(MessageExt msg) { System.out.println("MQ检查消息Tag【"+msg.getTags()+"】的本地事务执行结果"); return LocalTransactionState.COMMIT_MESSAGE; } }
4.6.2 使用限制
-
事务消息不支持延时消息和批量消息。
- 为了避免单个消息被检查太多次而导致半队列消息累积,我们默认将单个消息的检查次数限制为 15 次,但是用户可以通过 Broker 配置文件的
transactionCheckMax
参数来修改此限制。如果已经检查某条消息超过 N 次的话( N =transactionCheckMax
) 则 Broker 将丢弃此消息,并在默认情况下同时打印错误日志。用户可以通过重写AbstractTransactionCheckListener
类来修改这个行为。
- 事务消息将在 Broker 配置文件中的参数 transactionMsgTimeout 这样的特定时间长度之后被检查。当发送事务消息时,用户还可以通过设置用户属性 CHECK_IMMUNITY_TIME_IN_SECONDS 来改变这个限制,该参数优先于
transactionMsgTimeout
参数。
- 事务性消息可能不止一次被检查或消费。
- 提交给用户的目标主题消息可能会失败,目前这依日志的记录而定。它的高可用性通过 RocketMQ 本身的高可用性机制来保证,如果希望确保事务消息不丢失、并且事务完整性得到保证,建议使用同步的双重写入机制。
- 事务消息的生产者 ID 不能与其他类型消息的生产者 ID 共享。与其他类型的消息不同,事务消息允许反向查询、MQ服务器能通过它们的生产者 ID 查询到消费者。