4131:Charm Bracelet,考点:动规,滚动数组节省空间
原题:http://bailian.openjudge.cn/practice/4131/
描述
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N(1 ≤ N≤ 3,402) available charms. Each charm iin the supplied list has a weight Wi(1 ≤ Wi≤ 400), a 'desirability' factor Di(1 ≤ Di≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M(1 ≤ M≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
(这么长的英文我也懒得看)
有N见物品和一个容积为M的背包,第i件物品的重量w[i],价值为d[i],求解将哪些物品放入背包可使价值总和最大,每种物品只有一件,可以选择放或者不放。
输入
Line 1: Two space-separated integers: N and M
Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
输出
Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
样例输入
4 6 1 4 2 6 3 12 2 7
样例输出
23
解法
思路:如果直接动态规划,按照背包问题的一般解法,用二维数组来存,会MLE
代码如下:
#include <iostream> #include <cstring> #include <algorithm> using namespace std; int weight[3505]; int value[3505]; int dp[3505][13005];//dp[i][j]:考虑前i种物品,容积为j时的最大价值 int main() { memset(dp, 0, sizeof(dp)); int N, M; cin >> N >> M; for (int i = 0; i < N; i++) cin >> weight[i] >> value[i]; for (int j = 0; j <= M; j++) { if (j >= weight[0]) dp[0][j] = value[0]; } for (int i = 1; i < N; i++) { for (int j = 0; j <= M; j++) { dp[i][j] = dp[i - 1][j]; if (j >= weight[i]) { dp[i][j] = max(dp[i][j], dp[i - 1][j - weight[i]] + value[i]); } } } cout << dp[N - 1][M] << endl; }
在上面代码的基础上,使用滚动数组,注意这里的计算要用到j-weight[i]的部分,所以要倒着算,在前面的发生变化之前,先把后面的计算了。
#include <iostream> #include <cstring> #include <algorithm> using namespace std; int weight[3505]; int value[3505]; int dp[13005];//dp[i][j]:考虑前i种物品,容积为j时的最大价值 int main() { memset(dp, 0, sizeof(dp)); int N, M; cin >> N >> M; for (int i = 0; i < N; i++) cin >> weight[i] >> value[i]; for (int i = 0; i < N; i++) { for (int j = M; j >= 0; j--) { if (j >= weight[i]) { dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); } } } cout << dp[M] << endl; }