【学术篇】SDOI2008 仪仗队

Part1:传送门&吐槽

水题...
然而由于线筛里面的\(j\)打成了\(i\)然后就不能1A了OvO

Part2:题目分析

这个正方形是对称的...
而且很显然对角线上只有一个点会被看到...
所以我们只需要考虑对角线下面的一半(标红的)..
(其实你想考虑上面一半也无所谓→_→
这里写图片描述
显然,对于点\((i,j)\)如果\(gcd(i,j)\neq1\),那么一定会被\((\frac{i}{gcd(i,j)},\frac{j}{gcd(i,j)})\)挡住...
所以我们要找第\(i\)列中,\(gcd(i,j)=1\)\(j\)的个数..
也就是\(\sum_{i=2}^{n}\sum_{j=1}^{i-1}gcd(i,j)=1\)
而很明显这就是欧拉函数的定义...
也就是说这个题让求的不过是\(\sum_{i=2}^{n}\varphi(i-1)\)
而欧拉函数是个积性函数, 可以被线筛出来..
线筛的原理啊证明啊什么的baidu一下就有很多啦(其实是因为我不会啊→_→
所以也就做完了..

Part3:代码

由于是水题我都懒得压行了(喜闻乐见)(水题你1A也行啊

#include <cstdio>
const int N=40404;
int prime[N],tot,phi[N];
bool notp[N];
void euler(int n){
	phi[1]=1; notp[1]=1;
	for(int i=2;i<=n;++i){
		if(!notp[i]) prime[++tot]=i,phi[i]=i-1;
		for(int j=1;j<=tot&&i*prime[j]<=n;++j){ //就这个地方我写成++i了
			notp[i*prime[j]]=1;
			if(i%prime[j]==0){
				phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}else phi[i*prime[j]]=phi[i]*(prime[j]-1);
		}
	}
}
int main(){
	int n,ans=1; scanf("%d",&n); euler(n);
	for(int i=1;i<n;++i) ans+=phi[i]*2;
	printf("%d",ans);
}

Part4:好像没什么可注意的事项...

  • 好像有一条..\(\varphi(1)=1\)
  • 好像还有一条.. 我们只考虑了一半,所以记得\(*2\)
  • 怎么还有一条.. 别忘了对角线上那个点哦~
  • 这次应该是真没了.. 完结撒花吧..
posted @ 2018-02-04 08:48  Enzymii  阅读(130)  评论(0编辑  收藏  举报