说明:1. 针对不同的应用,有不同的处理流程,上图中列出了两种常用的预处理流程。流程一主要针对高精度的定量遥感应用,也就是对大气校正精度要求比较高应用,比如:植被参数定量反演等;流程二主要针对定性遥感或者对大气校正精度要求比较低的遥感应用,比如:土地利用类型分类等。本文介绍的主要是流程二的详细操作步骤,流程一的实现可参考博文:ENVI5.2下高分二号数据FLAASH大气校正;另外,中国资源卫星应用中心网站已经公布了最新的GF2数据绝对辐射定标系数和两个传感器的波谱响应函数,大家可以下载使用。2. 本例中所有操作都是在ENVI5.3版本下进行的,除NNDiffuse Pan Sharpening图像融合(ENVI5.2新增,ENVI5.1中可以使用G-S融合方法)外,其他操作在ENVI5.1/5.2下同样可以完成。
对本次操作中正射校正后的多光谱和全色数据的对比发现,二者配准的比较好(目前,大部分高分辨率数据正射校正后多光谱和全色数据配准的均比较好),所以我们这里不进行图像配准,直接进行图像融合。图像融合方法我们使用从ENVI5.2版本起新增的NNDiffuse Pan Sharpening方法(关于该工具的介绍可以参考博文:ENVI5.2中的NNDiffuse融合方法),大家也可以使用Gram-Schmidt Pan Sharpening等其它方法进行融合。
在进行融合之前,还需要说明的是:经过我们的测试,不同的数据存储格式会对融合的速度产生影响,当多光谱数据的存储格式为BIL或BIP时,其融合速度较BSQ格式来说,可以提高三倍左右。所以,我们建议大家融合之前可以先查看其数据存储格式,如果是BSQ,可以将其转化为BIL或BIP(转换时需要用到的工具:Raster Management > Convert Interleave),以便提高融合效率,详细说明可以参考博文:一种提高图像融合及其他一些处理速度的方法。这里,我们也为大家提供了将上述步骤与融合步骤合并为一个步骤的扩展工具:NNDiffuse Pan Sharpening (BIL)。
在Toolbox中,选择Extensions > NNDiffuse Pan Sharpening (BIL),弹出NNDiffuse Pan Sharpening面板。Input Low Resolution Raster选择上一步正射校正后的多光谱数据,Input High Resolution Raster选择上一步正射校正后的全色数据,其他参数保持默认。这里,需要说明的是NNDiffuse Pan Sharpening工具要求输入的多光谱和全色数据的空间分辨率是整数倍的(比如:本例中正射校正时分别将多光谱的全色的分辨率重采样为4米和1米,就是为了方便该工具的使用)。如果二者不是整数倍,使用此工具时需要将其重采样成整数倍;该工具对输入文件还有一些要求,平时我们使用的数据也基本满足这些要求,如果使用过程中报错可以查看帮助文档,判断输入数据是否满足相应要求。
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】博客园携手 AI 驱动开发工具商 Chat2DB 推出联合终身会员
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 欧阳的2024年终总结,迷茫,重生与失业
· 聊一聊 C#异步 任务延续的三种底层玩法
· 上位机能不能替代PLC呢?
· 2024年终总结:5000 Star,10w 下载量,这是我交出的开源答卷
· .NET Core:架构、特性和优势详解