面试题:线程A打印1-10数字,打印到第5个数字时,通知线程B
此题考查的是线程间的通信方式。
- 可以利用park/unpark实现
- 可以利用volatile关键字实现
- 可以利用synchronized结合wait notify实现
- 可以利用JUC中的CountDownLatch实现
- 可以利用Condition中的await signal 实现
代码示例
利用Park/Unpak实现线程通信
private void notifyThreadWithParkUnpark(){
Thread thb = new Thread("线程B"){
@Override
public void run() {
LockSupport.park();
System.out.println(Thread.currentThread().getName()+"启动了");
}
};
Thread tha =new Thread("线程A"){
@Override
public void run() {
for(int i=1;i<11;i++){
System.out.println(Thread.currentThread().getName()+i);
if(i==5){
LockSupport.unpark(thb);
}
}
}
};
thb.start();
tha.start();
}
park与unpark可以看做一个令牌,park就是等待令牌,unpark就是颁发一个令牌,另外需要注意的是park与unpark的调用次数不用一一对应,而且假如在同步代码块中调用park方法,线程会进入阻塞状态,但是不会释放已经占用的锁。
本例使用park使线程B进入阻塞等待状态,在线程A调用unpark并传入线程B的名称使线程B可以继续运行。
使用Volatile关键字实现线程通信
private static volatile boolean flag = false;
private void notifyThreadWithVolatile(){
Thread thc= new Thread("线程C"){
@Override
public void run() {
for (int i = 0; i < 10; i++) {
if(i==5){
flag=true;
try {
Thread.sleep(500L);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(Thread.currentThread().getName()+i);
}
}
};
Thread thd= new Thread("线程D"){
@Override
public void run() {
while (true){
// 防止伪唤醒 所以使用了while
while(flag){
System.out.println(Thread.currentThread().getName()+"收到通知");
break;
}
}
}
};
thd.start();
try {
Thread.sleep(1000L);
} catch (Exception e) {
e.printStackTrace();
}
thc.start();
}
volatile表示的禁用CPU缓存,用volatile修饰的变量,会强制从主内存中读取变量的值。java内存模型中关于volatile也是有说明的,volatile只能保证可见性,但不能保证原子性。
本例通过在volatile来修饰一个标志位,线程C修改了该标志位,然后线程D就可以“看到”标志位的修改,从而实现互相通信。
使用Synchronized 集合wait notify实现线程间通信
private static final Object lock = new Object();
private void notifyThreadWithSynchronized(){
Thread the = new Thread("线程E"){
@Override
public void run() {
synchronized (lock){
for (int i = 0; i <10 ; i++) {
System.out.println(Thread.currentThread().getName()+i);
if(i==5){
lock.notify();
}
}
}
}
};
Thread thf = new Thread("线程F"){
@Override
public void run() {
while(true){
synchronized (lock){
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"启动了");
}
}
}
};
thf.start();
try {
Thread.sleep(500L);
} catch (InterruptedException e) {
e.printStackTrace();
}
the.start();
}
synchronized修饰同步代码块,而wait notify notify必须是在synchronized修饰代码块中使用,否则会抛出监视器异常。
本实例定义一个对象锁,而线程F首先获取到互斥锁,在执行wait()方法时,释放已经持有的互斥锁,进入等待队列。而线程E执行获取到互斥锁开始执行,当1==5时,调用notify方法,就会通知lock的等待队列,然后线程E会继续执行,由于线程F此时还是获取不到互斥锁(因为被线程E占用),所以会在线程E执行完毕后,才能获取到执行权。
利用CountDonwLatch实现线程间通信
// 倒计时器
private CountDownLatch cdl = new CountDownLatch(1);
private void notifyThreadWithCountDownLatch(){
Thread thg = new Thread("线程G"){
@Override
public void run() {
try {
cdl.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"启动了");
}
};
thg.start();
Thread thh = new Thread("线程H"){
@Override
public void run() {
for (int i = 1; i < 11; i++) {
System.out.println(Thread.currentThread().getName()+i);
if(i==5){
cdl.countDown();
}
}
}
};
thh.start();
}
本示例中使用了CountDownLatch倒计时器,利用了倒计时器的阻塞特性来实现等待。具体就是声明一个计数器为1的倒计时器,线程G调用await()方法进入等待,直到计数器为0的时候才能够进入执行,而线程H在i==5会将计数器减一,使其为0,此时线程G就会继续执行了。
利用Condition中的await和signal来实现
// ReentrantLock+ condition
private Lock rtl=new ReentrantLock();
private Condition condition = rtl.newCondition();
private void notifyThreadWithCondition(){
Thread thi = new Thread("线程I"){
@Override
public void run() {
while (true){
rtl.lock();
try {
condition.await();
System.out.println(Thread.currentThread().getName()+"启动了");
break;
} catch (InterruptedException e) {
e.printStackTrace();
}finally {
rtl.unlock();
}
}
}
};
Thread thj = new Thread("线程J"){
@Override
public void run() {
rtl.lock();
try {
for (int i = 0; i < 10; i++) {
System.out.println(Thread.currentThread().getName()+i);
if(i==5){
condition.signal();
}
}
} finally {
rtl.unlock();
}
}
};
thi.start();
try {
Thread.sleep(500L);
} catch (InterruptedException e) {
e.printStackTrace();
}
thj.start();
}
本示例是结合ReentrantLock和Condition来进行控制线程间的执行顺序,Condition的await()和signal(),他们的语义和wait notify是一样的。区别是在synchronized代码块里调用wait notify。通过示例可以看到这中方法实现会不断的加锁与解锁,所以看起来稍微复杂些。
总结
通过以上代码看到通过volatile的方式是最简洁方便,用park与unpark方式是比较灵活,不用加锁或解锁,剩下的synchronized与Conditon都是用了锁,而CountDownLatch则是利用了计数器。