C#版 - LeetCode 148. Sort List 解题报告(归并排序小结)

leetcode 148. Sort List



Total Accepted: 68702 Total Submissions: 278100 Difficulty: Medium  ACrate: 24.7%

Sort a linked list in O(n log n) time using constant space complexity.


由于需要使用常量空间,即S(n)=O(1),故需要使用归并排序去解决此问题,下面采用二路归并来解题.

二路归并排序其实要做两件事,:

(1)“分解”——将序列每次折半划分

(2)“合并”——将划分后的序列段两两合并后排序

自顶向下的归并排序(递归):采用分治法进行自顶向下的程序设计方式,分治法的核心思想就是分解、求解、合并。


1) If head == NULL or 只有一个元素
    return head.

2) else 将链表分为两个部分,  
      pSlow是中点; /* pFast, pSlow指针找到中点 */

3) 分别对front,back排序
      sortList(head); // 前半段
      sortList(pSlow->next); // 后半段

4) 合并已排序的front, back
      merge(*pFront, *pBack);







单链表递归实现 自顶向下

AC代码:

#include <iostream>
using namespace std;
struct ListNode {
      int val;
      ListNode *next;
      ListNode(int x) : val(x), next(NULL) {}
};
 
class Solution {
public:
    ListNode* sortList(ListNode* head) {
        ListNode *pFast, *pSlow,*pFront,*pBack;
        pFast=head;
        pSlow=head;
        if(head==NULL || head->next==NULL) return head;
        else {
        while(pFast->next!=NULL && pFast->next->next!=NULL)
        {
            pFast=pFast->next->next;
            pSlow=pSlow->next;             //快慢指针找到中间节点,当快指针到末尾,慢指针恰好到中点
        }
	// 从中间结点断开,中间结点的next域置为NULL,中间结点及其以前的部分为前半段,中间结点后一个节点到最后为后半段        
        pFast=pSlow;
        pSlow=pSlow->next;
        pFast->next=NULL;

        pFront=sortList(head);           // 递归地排序前半段
        pBack=sortList(pSlow);          // 递归地排序后半段
        return merge(pFront,pBack); // 合并前后两段序列
    }
}
    
    ListNode* merge(ListNode* head1, ListNode *head2)  //  将两个已经有序的序列进行合并
    {  	
        ListNode *res, *p; 
        if(head1==NULL) return head2;
        if(head2==NULL) return head1;
            if(head1->val < head2->val)
                {
                    res=head1;          // 结点需要整体赋值,不能只给val属性赋值
                    head1=head1->next;
                }
            else {
                    res=head2;
                    head2=head2->next;               
            }
            p=res;
            while(head1!=NULL && head2!=NULL)
            {
                if(head1->val < head2->val)
                {
                    p->next=head1;
                    head1=head1->next;
                }
                else {
                    p->next=head2;
                    head2=head2->next;
                }
            p=p->next;    
            }

         if(head1!=NULL) p->next=head1;        // 挂接上去
         else if(head2!=NULL) p->next=head2;
         return res; 
    }
};

// 以下为测试部分
/*   
int main()
{
	ListNode *pOut;
	ListNode *head=new ListNode(5);
	head->next=new ListNode(8);
	head->next->next=new ListNode(7);
	head->next->next->next=new ListNode(12);
	head->next->next->next->next=new ListNode(4);		
	Solution sol;
	
	pOut=sol.sortList(head);
	
	while(pOut!=NULL)
	{
		cout<<pOut->val<<" ";
		pOut=pOut->next;
	}
	cout<<endl;
	return 0;
}
*/

链表 非递归实现 自底向上 

非递归实现的思想和递归正好相反,原来的递归过程是将待排序集合一分为二,直至排序集合就剩下一个元素位置,然后不断的合并两个排好序的数组。所以非递归思想为,将数组中的相邻元素两两配对。用merge函数将他们排序,构成n/2组长度gap为2的排序好的子数组段,然后再将他们排序成长度为4的子数组段,如此继续下去,直至整个数组排好序。

先将1+1(gap=1)个只有1个结点的链表按二路归并的方法加到tail结点的后面,然后更新tail;接着将2+2(gap=2)个分别有序的链表按二路归并的方式加到当前tail结点的后面,然后更新tail;gap每次扩大2倍,直到从split()函数(从head结点开始分离出长度为gap的链表)的返回值为NULL时结束外层循环。


例如: 下图是6 10 9 5 3 11 4 8 1 2 7的自底向上的归并过程...


链表 非递归

AC代码

// To-Do: 链表非递归实现,自底向上 
#include <iostream>
using namespace std;
struct ListNode{
    int val;
    ListNode *next;
    ListNode(int x): val(x), next(NULL) {}
};
class Solution {
public:
    ListNode *split(ListNode *head, int size) // 从head结点开始分离出长度为size的链表,并将第size-1个结点的next置为NULL,返回剩下的链表 
    { 
        for(int i = 1; i < size; i++)
        {
           if(head != NULL) head=head->next;  // 从head结点开始分离出长度为size的链表,分离前总长度>size时,可以顺利到结尾,如果不足size,剩下的链表为NULL,分离到的长度为实际长度(<size的某值)     
        }
        if(head == NULL) return NULL;            
        ListNode *p = head->next;
        head->next = NULL;
        return p;
    }   
    ListNode* merge(ListNode *head1, ListNode *head2, ListNode *tail)  // tail始终指向已合并链表的末尾,tail之后的结点值是有序的 
    {
        while(head1 && head2)   // head1、head2均不为NULL时 
        {
            if(head1->val < head2->val)  // 将值较小的结点挂到tail之后
            {
                tail->next = head1;      // head1的值较小,将该结点挂到tail后 
                tail = tail->next;
                head1 = head1->next;
            }
            else {
                tail->next = head2;      // head2的值较小,将该结点挂到tail后 
                tail = tail->next;
                head2 = head2->next;
            }
        }
        tail->next = (head1 == NULL) ? head2 : head1; 
        // 如果head1先为空,即head1对应的链表较短时,把head2剩下的那些结点挂到tail后面; 反之同理,同时为NULL时皆可 
        while(tail->next != NULL)
            tail = tail->next;
        return tail;
    }    
    ListNode* sortList(ListNode* head)
    {
        if(head == NULL || head->next == NULL)
            return head;         
        int len = 0;
        ListNode *cur = head;
        while(cur)
        {
            len ++;
            cur = cur->next;
        }        
        ListNode *front, *back;        
        ListNode *pTemp = new ListNode(0);  //pTemp保存临时更小的那个节点
        ListNode *tail = pTemp;         
        pTemp->next = head;                      // 将head挂到pTemp之后 
        for(int size = 1; size < len; size <<= 1)  // 每次归并都分两路,链表的宽度的初始值为1,(2,4,8,....),size*2 
        {
            cur = pTemp->next;
            tail = pTemp;
            while(cur) // 当前结点后面还有结点时继续循环 
            {
                front = cur;
                back = split(cur, size);    //从当前结点向后分离出size长的链表front
                cur = split(back, size);    //从当前结点向后分离出size长的链表back  
                tail = merge(front, back, tail);  // 将front链表、back链表以二路归并的方式加到tail后去 
            }    
        }
        return pTemp->next;
    }
};
// 以下为测试   
int main() 
{
    Solution sol;   
    ListNode *pOut; 
    ListNode *head=new ListNode(5); 
    head->next=new ListNode(8); 
    head->next->next=new ListNode(7); 
    head->next->next->next=new ListNode(12); 
    head->next->next->next->next=new ListNode(-3);     
    pOut=sol.sortList(head);      
    while(pOut!=NULL) 
    { 
        cout<<pOut->val<<" "; 
        pOut=pOut->next; 
    } 
    cout<<endl; 
    return 0; 
}

数组 递归实现:

#include <cstdio>
using namespace std;
void Merge(int arr[], int left, int right, int mid) {
    //归并操作
    int length = right - left + 1;
    int beginA = left, beginB = mid + 1;  //设置两个标志,分别指向两个已排序序列的起始位置
    int i, j = 0;
    int *pArr = new int[length];  // 创建临时辅助数组
    //     if (pArr == NULL)  {  printf("Memory allocated error\n"); return;  }
    while(beginA <= mid)
    {
        if(arr[beginA] > arr[beginB])  pArr[j++] = arr[beginB++];
        if(arr[beginA] < arr[beginB])  pArr[j++] = arr[beginA++];
        if(beginB > right) break;
    }
    while(beginA <= mid) pArr[j++] = arr[beginA++];   //将小元素添加到辅助数组
    while(beginB <= right) pArr[j++] = arr[beginB++]; //同上
    for(i = 0; i < length; i++)  arr[left++] = pArr[i]; //把排序好的部分移回arr数组中
    delete[] pArr;   // 释放辅助数组
}
void mergeSort(int arr[], int left, int right)
{
    //对数组递归地进行二路归并
    int mid =(left + right)/2;
    if(left >= right) return;
    mergeSort(arr,left, mid);          //递归的归并排序左边
    mergeSort(arr, mid+1, right);      //递归的归并排序左边
    Merge(arr,left,right,mid);         //合并
}
int main()
{
    int arr[]={5,2,6,3,9,10,8};
    int len = sizeof(arr)/sizeof(int);
    mergeSort(arr,0,len-1);
    for(int i = 0; i <= len-1; i++) {
        printf("%d ",arr[i]);
    }
    return 0;
}


数组 非递归实现:

#include <cstdio>
using namespace std;
// 将数组中连续的两个子序列合并为一个有序序列
void Merge(int* arr, int *tempArr, int bIndex, int mIndex, int eIndex)
{
	int gap = eIndex - bIndex;    //合并后的序列长度
	int i = 0;         //记录合并后序列插入数据的偏移
	int j = bIndex;    //记录子序列1插入数据的偏移
	int k = mIndex;    //记录子序列2插入数据的偏移
	while(j < mIndex && k < eIndex)
	{
		if(arr[j] <= arr[k])
		{
			tempArr[i++] = arr[j];
			j++;
		}
		else
		{
			tempArr[i++] = arr[k];
			k++;
		}
	}
	if(j == mIndex)    //说明序列1已经插入完毕
	{
		while(k < eIndex)
			tempArr[i++] = arr[k++];		
	} 
	else {             //说明序列2已经插入完毕
		while(j < mIndex)
			tempArr[i++] = arr[j++];
	} 			
	for(i = 0; i < gap; i++)    //将合并后序列重新放入arr
		arr[bIndex + i] = tempArr[i];
}
// 自底向上的归并排序(非递归)
void mergeSort(int* arr, int len)
{
	int *tempArr = new int[len];    //临时存放合并后的序列
	int gap = 1;    //初始有序子序列长度为1
	while(gap < len)
	{
		int i = 0;
		for(; i + 2*gap < len; i += 2*gap)
			Merge(arr, tempArr, i, i + gap, i + 2*gap);
		if(i + gap < len)
			Merge(arr, tempArr, i, i + gap, len);
		gap *= 2;    //有序子序列长度*2
	}
	delete[] tempArr;
}
// 以下为测试 
int main()
{
    int arr[]={5,2,6,3,9,10,8};
    int len = sizeof(arr)/sizeof(int);
    mergeSort(arr, len);
    for(int i = 0; i <= len-1; i++) {
        printf("%d ",arr[i]);
    }
    return 0;
}


另外,如果要进行原址归并,不占用其他空间,编程珠玑上提出了一个很神奇的算法,代码如下:

#include<cstdio>
using namespace std;
//此函数用于一个反转数组
void reverse(int arr[], size_t size)
{
    int left = 0,
        right = size - 1,
        tmp = 0;
    while(left < right)
    {
        tmp = arr[left];
        arr[left] = arr[right];
        arr[right] = tmp;
        left++;
        right--;
    }
}
//手摇法 通过三次反转操作交换两个子序列的位置,两个子序列内部的排序不变。
void swap_blocks(int arr[], size_t size, size_t lft_size) {
    reverse(arr, lft_size);
    reverse(arr + lft_size, size - lft_size);
    reverse(arr, size);
}
void in_place_merge(int arr[], size_t size, size_t mid) //原地归并
{
    size_t lft_s = 0, rit_s = mid, rmove; 
    while (lft_s < rit_s && rit_s < size)
    {
        while (lft_s < rit_s && arr[lft_s] <= arr[rit_s])
        {
            lft_s++;
        }
        rmove = 0;
        while (rit_s < size && arr[lft_s] > arr[rit_s])
        {
            rmove++;
            rit_s++;
        }
        swap_blocks(arr + lft_s, rit_s - lft_s, rit_s - lft_s - rmove);
        lft_s += rmove;
    }
}
int main()
{
    int arr[]={5,2,6,3,9,10,8};
    int len = sizeof(arr)/sizeof(int);
    in_place_merge(arr,0,len-1);
    for(int i = 0; i <= len-1; i++) {
        printf("%d ",arr[i]);
    }
    return 0;
}


相关链接:
自顶向下的归并排序 - 太阳落雨 - CSDN http://blog.csdn.net/cjf_iceking/article/details/7921443

自底向上的归并排序 - 太阳落雨 - CSDN http://blog.csdn.net/cjf_iceking/article/details/7920153

归并排序(递归实现+非递归实现+自然合并排序) - geeker - 博客园 http://www.cnblogs.com/liushang0419/archive/2011/09/19/2181476.html


posted @ 2016-04-15 14:56  大白技术控  阅读(352)  评论(0编辑  收藏  举报