C++版 - Leetcode 69. Sqrt(x) 解题报告【C库函数sqrt(x)模拟-求平方根】 编辑
69. Sqrt(x)
Total Accepted: 93296 Total Submissions: 368340 Difficulty: Medium
提交网址: https://leetcode.com/problems/sqrtx/
Implement int sqrt(int x)
.
Compute and return the square root of x.
分析:
解法1:牛顿迭代法(牛顿切线法)
Newton's Method(牛顿切线法)是由艾萨克·牛顿在《流数法》(Method of Fluxions,1671年完成,在牛顿死后的1736年公开发表)中最早提出的。约瑟夫·拉弗森也曾于1690年在Analysis Aequationum中提出此方法。它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
蓝线表示方程f(x)而红线表示切线. 可以看出比更靠近f所要求的根x.
既然牛顿迭代法可以用来求解方程的根,那么不妨以方程为例,来试着求解它的根。为此。令, 也就是相当于求解f(x)=0的解,如上图所示。
首先随便找一个初始值,如果不是解,做一个经过这个点的切线,与轴的交点为。同理,如果不是解,做一个经过这个点的切线,与轴的交点为。 以此类推... 以这样的方式得到的会无限趋近于f(x)=0的解。
判断是否是f(x)=0的解有两种方法:1. 直接计算的值判断是否为0;2. 判断f(x)=0前后紧邻的两个解是否无限接近。
经过这个点的切线方程为
其中,为的导数,本题中导数为。令切线方程等于0 (纵轴截距取0),即可求出:
代入,继续化简:
基于上述迭代公式,可以给出了一个求平方根的算法。事实上,这也的确是很多语言中内置的开平方函数的实现方法。牛顿迭代法也同样适用于求解其他多次方程的解。
已AC代码:
#include <cstdio>
#include<climits>
#include<cmath>
using namespace std;
class Solution {
public:
int mySqrt(int x) {
if(x < 0) return INT_MIN;
if(x == 0) return 0;
double pre = 0; // res和pre是邻近的两次迭代结果,也可用变量adj表示邻近的值
double res = 1; // 在1附近开始找,迭代逼近目标值
while(abs(res-pre) > 0.000001) // 判断条件改为res-pre > 0.000001 || res-pre < -0.000001后,运行时间不变
{
pre = res;
res = (res + x/res)/2.0;
}
return int(res); // 返回值要求为int,需强制转换
}
};
// 下面为测试
int main()
{
int x1=7;
int x2=2222147483648;
int x3=-5;
Solution sol;
int res1=sol.mySqrt(x1);
int res2=sol.mySqrt(x2);
int res3=sol.mySqrt(x3);
printf("%d \n", res1);
printf("%d \n", res2);
printf("%d \n", res3);
return 0;
}
P.S:本题是求解整数的平方根,并且返回值也是整型。在上述代码基础上稍微做修改,就可以同样适用于double(仅限方法1)。
#include <cstdio>
#include<climits>
#include<cmath>
using namespace std;
class Solution {
public:
double mySqrt(double x) {
if(x < 0) return INT_MIN;
if(x == 0) return 0;
double pre = 0;
double res = 1; // 所求值为double时,迭代的初始值不能为0
// double res = 0.000001;
// double next = 1; // res和pre是连续两次的迭代结果(邻近值)
while(abs(res-pre) > 0.000001) // 判断条件改为res-pre > 0.000001 || res-pre < -0.000001后,运行时间不变
{
pre = res;
res = (res + x/res)/2.0;
}
return (res);
}
};
// 下面为测试
int main()
{
double x1=7;
double x2=2222147483648;
double x3=-5;
Solution sol;
double res1=sol.mySqrt(x1);
double res2=sol.mySqrt(x2);
double res3=sol.mySqrt(x3);
printf("%lf \n", res1);
printf("%lf \n", res2);
printf("%lf \n", res3);
return 0;
}
PS: 由于所求值为double时,迭代的初始值不能为0。此代码中pre和res可以用res和next替换,见注释部分,当然循环中也得将pre换为next
解法2:二分搜索法
对于一个非负数n,它的平方根取整 ,如下图所示,有x=1、2、4共3个整数交点,x>4以后 恒小于.
上图可在浏览器的新标签中打开,高清的
由于int sqrt(int x)
接受的参数与返回值均为int型,故⌊√x⌋ ≤ (⌊x/2⌋+1)即等价于强数据类型语言(比如:C++、C、Java等)中的√x(目标值)≤ x/2+1 (x为自然数,非负整数). 于是在[0, x/2+1]这个范围内进行二分搜索,可以求出n的int型平方根,mid=(low+up)/2,其初值为x/2,结果应在[low, up]的mid或up处取得。如果用弱数据类型的语言(比如:PHP、Python、JavaScript等)实现此方法,需先自行ceiling或ceil进行下取整!
但此法不适用于double,因为此法利用了int型的特点。
AC代码:
#include <cstdio>
#include<climits>
using namespace std;
class Solution {
public:
int mySqrt(int x) {
if(x<0) return INT_MIN;
long long low=0;
long long up=x;
while(low <= up)
{
long long mid=(low+up)/2; // 取中间值mid,在此处如果改为位运算居然使程序变慢了!
long long square=mid*mid;
if(x==square) return mid; // 目标值等于mid处平方,提前退出循环出口
else if(x>square) low=mid+1; // 目标值大于mid处平方,在开区间(mid, up]中找,下界low的值调整为mid-1
else up=mid-1; // 目标值小于mid处平方,在开区间[low, mid)中找,上界up的值调整为mid+1
}
return up;
}
};
// 下面为测试
int main()
{
int x1=7;
int x2=2222147483648;
int x3=-5;
Solution sol;
int res1=sol.mySqrt(x1);
int res2=sol.mySqrt(x2);
int res3=sol.mySqrt(x3);
printf("%d \n", res1);
printf("%d \n", res2);
printf("%d \n", res3);
return 0;
}
此代码运行时间为8 ms,打败了39.64%的C++提交,除以2改成右移1位后,反而变慢了,12 ms,只打败了4.39%的C++提交...
相关链接:
http://www.cnblogs.com/AnnieKim/archive/2013/04/18/3028607.html (方法1代码测试未通过,方法2顺利)
http://blog.csdn.net/baimafujinji/article/details/50390841 (参考了循环的出口条件)
如果,您希望更容易地发现我的新文章,不妨点击一下绿色通道的【关注我】,亦可微信搜索公众号「大白技术控」关注我。
如果您觉得阅读本文对您有帮助,请点击一下右下方的推荐按钮,您的推荐将是我写作的最大动力!版权声明:本文为博主原创或转载文章,欢迎转载,但转载文章之后必须在文章页面明显位置注明出处,否则保留追究法律责任的权利。如您有任何疑问或者授权方面的协商,请 .
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 智能桌面机器人:用.NET IoT库控制舵机并多方法播放表情
· Linux glibc自带哈希表的用例及性能测试
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 手把手教你在本地部署DeepSeek R1,搭建web-ui ,建议收藏!
· 新年开篇:在本地部署DeepSeek大模型实现联网增强的AI应用
· 程序员常用高效实用工具推荐,办公效率提升利器!
· Janus Pro:DeepSeek 开源革新,多模态 AI 的未来
· 【译】WinForms:分析一下(我用 Visual Basic 写的)