Maxima, Maple, and Mathematica: the Summary~


                        Maxima, Maple, and Mathematica: the Summary

Before going any further, let us summarise in Table 2.1 what we have glimpsed of Maxima, Maple, and Mathematica so far.


 
Table 2.1: Comparison between some Maxima, Maple, and Mathematica commands
 MaximaMapleMathematica
limitlimit(x-7,x,3);limit(x-7,x=3);Limit[x-7,x->3]
expandexpand((a+b)^3);expand((a+b)^3);Expand[(a+b)^3]
factorfactor(%); ezgcd(num, denom);factor(%); normal(%);Factor[%]
solvesolve(a*x^2=4,x);solve(a*x^2=4,x);Solve[a x^2==4,x]
3D plotsplot3d(sin(x*y),[x,-2,2],[y,-1,1]);plot3d(sin(x*y),x=-2..2,y=-1..1);Plot3D[Sin[x y],{x,-2,2},{y,-1,1}]
    displayset_plot_option([plot_format,gnuplot]);plotsetup(x11);Display["math.eps", %, "EPS"]
    environmentplot_options;plotsetup();$DisplayFunction
integralintegrate(x^2*sin(alpha*x),x,0,beta);int(x^2*sin(alpha*x),x=0..beta);Integrate[x^2 Sin[alpha x],{x,0,beta}]
integer factor ifactor(%);FactorInteger(%)
square rootsqrt(3);sqrt(3);Sqrt[3]
numericalev(%,numer);evalf(%);N[%,10]
substitutionev(%,x=1,y=2); or at(%,[x=1,y=2]);eval(%,[x=1,y=2]);ReplaceAll[%,{x->1,y->2}]
sumsum((1+i)/(1+i^4),i,1,10);sum((1+i)/(1+i^4),i=1..10);Sum[(1+i)/(1+i^4),{i,1,10}]
    delayed'sum((1+i)/(1+i^4),i,1,10);Sum((1+i)/(1+i^4),i=1..10);use :=
productproduct((i^2+3*i-11)/(i+3),i,0,10);product((i^2+3*i-11)/(i+3),i=0..10);Product[(i^2+3*i-11)/(i+3),{i,0,10}]
    delayed'product((i^2+3*i-11)/(i+3),i,0,10);Product((i^2+3*i-11)/(i+3),i=0..10);use :=
infinityINFinfinityInfinity
complex%III
 rectform(%);convert(%,rect); 
 polarform(%);convert(%,polar); 
 realpart(%);Re(%);Re[%]
 imagpart(%);Im(%);Im[%]
 abs(%);abs(%);Abs[%]
 carg(%);argument(%);Arg[%]
trigonometrytrigsimp(%); trigrat(%);simplify(%);Simplify[%], TrigSimp[%], TrigReduce[%]
 trigexpand(%); TrigExpand[%]
    othertrigrat(%); TrigFactor[%]
functionsf(x):=x^2+1/2; or define(f(x),x^2+1/2);f:=x->x^2+1/2; or f:=unapply(x^2+1/2,x);f[x_]=x^2+1/2 or f=Function[x,x^2+1/2]
derivativesdiff(f(x),x,2);diff(f(x),x&2);D[f[x],{x,2}]
    delayed'diff(f(x),x,2);Diff(f(x),x&2);use :=
arraysarray([x, y], 300);x := array(1..300);Array[x, 300]
split expressionpickapart(%, 4);addressof(%);FullForm[%];
  disassemble(%);[[3]]
  pointto(a[2]);ReplacePart[Out[32], Expand[Out[54]], 1]
  rhs(solutions[2]); 
terminator; or $;newline or ;
range[x,-2,2]x=-2..2{x,-2,2}
times**space or *
last result%%%
assignment::==
equality====
 
源地址:
http://beige.ucs.indiana.edu/P573/node35.html

posted @ 2013-03-31 19:36  大白技术控  阅读(355)  评论(0编辑  收藏  举报