计算机代数系统对比:Computer Algebra Software: Mathematica, Maxima, Pari/GP

    Computer Algebra Software: Mathematica, Maxima, Pari/GP

                                        from Hyperpolyglot

                                        a side-by-side reference sheet



mathematicamaximapari/gp
version used
 
8.05.212.3
show version
 
select About Mathematica in Mathematica menu$ maxima --version$ gp --version
grammar and invocation
mathematicamaximapari/gp
interpreter
 
$ maxima -b foo.mac$ gp -q foo.gp
repl
 
$ math$ maxima$ gp
block delimiters
 
stmt)block (  ) }
statement separatoror sometimes newline

before a newline suppresses output
;

suppresses output:
$
newline or ;

a trailing semicolon suppresses output
end-of-line comment
 
nonenone1 + 1 \\ addition
multiple line comment
 
1 + (* addition *) 11 + /* addition */ 11 + /* addition */ 1
variables and expressions
mathematicamaximapari/gp
assignmenta = 3
Set[a, 3]
a: 3a = 3
parallel assignment{a, b} = {3, 4}
Set[{a, b}, {3, 4}]
[a, b]: [3, 4]none
compound assignment+= -= *= /=
corresponding functions:
AddTo SubtractFrom TimeBy DivideBy
none+= -= *= /= %=
increment and decrement++x --x
PreIncrement[x] PreDecrement[x]
x++ x--
Increment[x] Decrement[x]
nonereturn value after increment or decrement:
x++ x--
null
 
Null
null test
 
undefined variable access
 
treated as an unknown numbertreated as an unknown symboltreated as an unknown number
remove variable bindingClear[x]
Remove[x]
kill(x)kill(x)
conditional expression
 
If[x > 0, x, -x]if is(x > 0) then x else -xif(x > 0, x, -x)
arithmetic and logic
mathematicamaximapari/gp
true and false
 
True Falsetrue false1 0
falsehoods
 
Falsefalse0
logical operators! True || (True && False)
Or[Not[True], And[True, False]]
is(not true or (true and false))! 1 || (1 && 0)
relational operators== != > < >= <=
corresponding functions:
Equal Unequal Greater Less GreaterEqual LessEqual
= # > < >= <=== != > < >= <=
arithmetic operators+ - * / Quotient Mod
adjacent terms are multiplied, so * is not necessary. Quotient and Mod are functions, not binary infix operators. These functions are also available:
Plus Subtract Times Divide
+ - * / quotient mod
quotient and mod are functions, not binary infix operators
+ - * / none %
integer division
 
Quotient[a, b]quotient(a, b)divrem(a, b)[1]
integer division by zerodividend is zero:
Indeterminate
otherwise:
ComplexInfinity
errorerror
float divisionexact division:
a / b
float(a) / bexact division:
a / b
float division by zerodividend is zero:
Indeterminate
otherwise:
ComplexInfinity
errorerror
power2 ^ 16
Power[2, 16]
2 ^ 162 ^ 16
sqrtreturns symbolic expression:
Sqrt[2]
returns symbolic expression:
sqrt(2)
returns float:
sqrt(2)
sqrt -1
 
I%i1.000 * I
transcendental functionsExp Log Sin Cos Tan ArcSin ArcCos ArcTan ArcTan
ArcTan accepts 1 or 2 arguments
exp log sin cos tan asin acos atan atan2exp log sin cos tan asin acos atan none
transcendental constants
pi and the euler constant
Pi E%pi %ePi exp(1)
float truncation
round towards zero, round to nearest integer, round down, round up
IntegerPart Round Floor Ceilingtruncate round floor ceilingtruncate round floor ceil
absolute value
and signum
Abs Signabs signabs sign
integer overflow
 
none, has arbitrary length integer typenone, has arbitrary length integer typenone, has arbitrary length integer type
float overflow
 
noneerrorerror
rational constructionuse integer division:
1 / 7
use integer division:
1 / 7
use integer division:
1 / 7
rational decomposition
 
Numerator Denominatorratnumer ratdenomnumerator denominator
complex construction
 
1 + 3I1 + 3 * %i1 + 3 * I
complex decomposition
real and imaginary part, argument and modulus, conjugate
Re Im
Arg Abs
Conjugate
realpart imagpart
carg abs
conjugate
real imag
?? abs
conj
random number
uniform integer, uniform float
RandomInteger[{0, 99}]
RandomReal[]
random(100)
random(1.0)
random(100)
??
random seed
set, get
SeedRandom[17]
??
set_random_state(make_random_state(17));
??
setrand(17)
getrand()
binary, octal, and hex literals2^^101010
8^^52
16^^2a
base conversionBaseForm[42, 7]
BaseForm[7^^60, 10]
\\ 42 as powers of 7 up to 9th power:
42 + O(7^10)
strings
mathematicamaximapari/gp
string literals"don't say \"no\"""don't say \"no\"""don't say \"no\""
newline in literalyesno; use \n escape
string literal escapes\\ \" \b \f \n \r \t \ooo\n \t \" \\
character accessCharacters["hello"][[1]]charat("hello", 1)
chr and ordFromCharacterCode[{65}]
ToCharacterCode["A"][[1]]
lengthStringLength["hello"]slength("hello")length("hello")
concatenate"one " <> "two " <> "three"concat("one", "two", "three");Str("one", "two", "three")
index of substringStringPosition["hello", "el"][[1]][[1]]
StringPosition returns an array of pairs, one for each occurrence of the substring. Each pair contains the index of the first and last character of the occurrence.
ssearch("el", "hello")
counts from one, returns false if not found
extract substringStringTake["hello", {1, 4}]substring("hello", 1, 5)
splitStringSplit["foo,bar,baz", ","]split("foo,bar,baz",",")
joinStringJoin[Riffle[{"foo", "bar", "baz"}, ","]]simplode(["foo","bar","baz"],",")
trimStringTrim[" foo "]strim(" ", " foo ")
striml(" ", " foo")
strimr(" ", "foo ")
convert from string, to string7 + ToExpression["12"]
73.9 + ToExpression[".037"]
"value: " <> ToString[8]
7 + parse_string("12")
73.9 + parse_string(".037")
case manipulationToUpperCase["foo"]
ToLowerCase["FOO"]
supcase("foo")
sdowncase("FOO")
regular expressions
mathematicamaximapari/gp
regex testre = RegularExpression["[a-z]+"]
sc = StringCases["hello", re]
Length[sc] > 0
regex substitutions = "foo bar bar"
re = RegularExpression["bar"]
StringReplace[s, re -> "baz", 1]
StringReplace[s, re -> "baz"]
arrays
mathematicamaximapari/gp
literal{1, 2, 3}

List[1, 2, 3]
[1, 2, 3]\\ [1, 2, 3] is a vector literal:
List([1, 2, 3])
size
 
Length[{1, 2, 3}]length([1, 2, 3])length(List([1, 2, 3]))
empty test
 
Length[{}] == 0emptyp([]);length(List([])) == 0
lookup(* access time is O(1) *)
(* indices start at one: *)
{1, 2, 3}[[1]]

Part[{1, 2, 3}, 1]
/* access time is O(n) */
/* indices start at one: */
[1, 2, 3][1];
\\ access time is O(1).
\\ indices start at one:
List([1, 2, 3])[1]
update
 
a[[1]] = 7a[1]: 7;listput(a, 7, 1)
out-of-bounds behaviorleft as unevaluated Part[] expressioninvalid index errorout of allowed range error
element index(* returns list of all positions: *)
First /@ Position[{7, 8, 9, 9}, 9]
/* returns list of all positions: */
sublist_indices([7, 8, 9, 9], lambda([x], x = 9));
none
slice
 
{1, 2, 3}[[1 ;; 2]]nonenone
array of integers as index(* evaluates to {7, 9, 9} *)
{7, 8, 9}[[{1, 3, 3}]]
nonenone
manipulate backa = {6,7,8}
AppendTo[a, 9]
elem = a[[Length[a]]]
a = Delete[a, Length[a]]
elem
a: [6, 7, 8];
a: endcons(9, a);
last(a);
/* no easy way to delete last element */
a = List([6, 7, 8])
listput(a, 9)
elem = listpop(a)
manipulate fronta = {6,7,8}
PrependTo[a, 5]
elem = a[[1]]
a = Delete[a, 1]
elem
load("basic");

a: [6, 7, 8];
push(5, a);
elem: pop(a);
a = List([6, 7, 8]);
listinsert(a, 5, 1);
elem = a[1];
listpop(a, 1);
head
 
First[{1, 2, 3}]first([1, 2, 3]);List([1, 2, 3])[1]
tail
 
Rest[{1, 2, 3}]rest([1, 2, 3]);none
cons(* first arg must be an array *)
Prepend[{2, 3}, 1]
/* second arg must be an array */
cons(1, [2, 3]);
a = List([1, 2, 3]);
listinsert(a, 1, 1);
concatenate
 
Join[{1, 2, 3}, {4, 5, 6}]append([1, 2, 3], [4, 5, 6])concat(List([1, 2, 3]), List([4, 5, 6]))
replicate
 
ten_zeros = Table[0, {i, 0, 9}]ten_zeros: makelist(0, 10);
copy
 
a2 = aa2: copylist(a);a2 = a
iterate
 
Function[x, Print[x]] /@ {1, 2, 3}a: [1, 2, 3];

for i from 1 thru length(a) do print(a[i]);
a = List([1, 2, 3])

for(i=1, length(a), print(a[i]))
reverse
 
Reverse[{1, 2, 3}]reverse([1, 2, 3]);a = List([1, 2, 3])
a2 = listcreate()
while(i > 0, listput(a2, a[i]); i—)
sortSort[{3, 1, 4, 2}]sort([3, 1, 4, 2]);a = List([3,1,4,2])
listsort(a)
a
dedupe
 
Union[{1, 2, 2, 3}]unique([1, 2, 2, 3]);
membership
 
MemberQ[{1, 2, 3}, 2]member(2, [1, 2, 3]);/* The Set() constructor takes an array or vector as
  an argument. It converts the elements to strings
  and sorts them, discarding duplicates.
  setsearch() returns the index of the element or zero
  if not in the set. */

setsearch(Set([1, 2, 3]), 2)
intersectionIntersect[{1, 2}, {2, 3, 4}]/* { } is literal notation for a set;
  use setify() to convert array to set */

intersect({1, 2}, {2, 3, 4});
setintersect(Set([1, 2]), Set([2, 3, 4]))
union
 
Union[{1, 2}, {2, 3, 4}]union({1, 2}, {2, 3, 4});setunion(Set([1, 2]), Set([2, 3, 4]))
relative complement, symmetric differenceComplement[{1, 2, 3}, {2}]
none
setdifference({1, 2, 3}, {2});
symmdifference({1, 2}, {2, 3, 4});
setminus(Set([1, 2, 3]), Set([2]))
mapFunction[x, x x] /@ {1, 2, 3}

Map[Function[x, x x], {1, 2, 3}]
map(lambda([x], x * x), [1, 2, 3])
filter
 
Select[{1, 2, 3}, # > 2 &]sublist([1, 2, 3], lambda([x], x > 2))
reduceFold[Plus, 0, {1, 2, 3}]/* returns -4: */
lreduce(lambda([x,y], x - y), [1, 2, 3])

/* returns 2: */
rreduce(lambda([x,y], x - y), [1, 2, 3])
universal and existential testsnoneevery(evenp, [1, 2, 3]);
some(evenp, [1, 2, 3]);
min and max elementMin[{1, 2, 3}]
Max[{1, 2, 3}]
apply(min, [1, 2, 3]);
apply(max, [1, 2, 3]);
shuffle and samplex = {3, 7, 5, 12, 19, 8, 4}

RandomSample[x]
RandomSample[x, 3]
random_permutation([3, 7, 5, 12, 19, 8, 4]);
zip(* list of six elements: *)
Riffle[{1, 2, 3}, {"a", "b", "c"}]
/* list of six elements: */
join([1, 2, 3], ["a", "b", "c"])
sequences
mathematicamaximapari/gp
rangeRange[1, 100]makelist(i, i, 1, 100)
arithmetic sequence of integers with difference 10Range[1, 100, 10]
arithmetic sequence of floats with difference 0.1Range[1, 100, .1]
multidimensional-arrays
mathematicamaximapari/gp
dictionaries
mathematicamaximapari/gp
record literalr = { n -> 10, avg -> 3.7, sd -> 0.4}defstruct(point(x, y, z));
p: point(2, 3, 5);
record member accessn /. rp@x
functions
mathematicamaximapari/gp
definitionadd[a_, b_] := a + b

(* alternate syntax: *)
add = Function[{a, b}, a + b]
add(a, b) := a + b;add(x, y) = x + y
invocationadd[3, 7]

add @@ {3, 7}
add(3, 7);add(3, 7)
return value
function value
anonymous functionFunction[{a, b}, a + b]

(#1 + #2) &
lambda([a, b], a + b)
missing argumenterror
extra argumenterror
default argument
variable number of argumentsf(x, [L]) := if emptyp(L) then x else [x, apply("+", L)];
f(1);
f(1, 2, 3);
execution control
mathematicamaximapari/gp
ifIf[x > 0,
  Print["positive"],
  If[x < 0,
    Print["negative"],
    Print["zero"]]]
if (is(x > 0)) then print("positive") elseif (is(x < 0)) then print("negative") else print("zero")if(x > 0, \
  print("positive"), \
  if(x < 0, \
    print("negative"), \
    print("zero")))
whilei = 0
While[i < 10, Print[i]; i++]
i = 0
while(i < 10, print(i); i++)
forFor[i = 0, i < 10, i++, Print[i]]for i from 0 thru 9 do print(i);for(i=0, 9, print(i))
break/continueBreak[] Continue[]break continue
raise exceptionThrow["failed"]throw("failed");

error("failed");
error("failed")
handle exceptionPrint[Catch[Throw["failed"]]]catch(throw("failed"));

errcatch(error("failed"));
finally blocknone
files
mathematicamaximapari/gp
write to stdoutPrint["hello"]print("hello")print("hello")
read entire file into string or arrays = Import["/etc/hosts"]
a = StringSplit[s, "\n"]
redirect to file
libraries and namespaces
mathematicamaximapari/gp
load
reflection
mathematicamaximapari/gp
list function documentation???
get function documentation?Tan
Information[Tan]
? tan
describe(tan)
? tan
grep documentation?? tan
query data typeHead[x]bigfloatp(x)
floatnump(x)
integerp(x)
numberp(x)
ratnump(x)
stringp(x)
listp(x)
type(x)
list variables in scope? 0
algebra
mathematicamaximapari/gp
solution to an equationSolve[x^3 + x + 3 == 0, x]solve(x^3 + x + 3, x)
solution to two equationsSolve[x + y == 3 && x == 2y,
  {x, y}]
solve([x+y=3, x=2*y], [x, y])
numerical approximationN[Exp[1]]
Exp[1] + 0.
N[Exp[1], 10]
float(exp(1))1/7 + 0.
expand polynomialExpand[(1 + x)^5]expand((1+x)^5)
factor polynomialFactor[3 + 10 x + 9 x^2 + 2 x^3]factor(3 + 10*x + 9*x^2 + 2*x^3)
add fractionsTogether[a/b + c/d]ratsimp(a/b + c/d)
decompose fractionApart[(b c + a d)/(b d)]
calculus
mathematicamaximapari/gp
differentationD[x^3 + x + 3, x]diff(x^3 + x + 3, x)
diff(sin(x), x)
P = x^3 + x + 3
P'
sin(x)'
higher order differentiationD[Log[x], {x, 3}]diff(log(x), x, 3);
integrationIntegrate[x^3 + x + 3, x]
Integrate[x^3 + x + 3, {x, 0, 1}]
integrate(x^3 + 3*x + 3, x);
integrate(x^3 + 3*x + 3, x, 0, 1);
find minimal valueMinimize[Sqrt[a^2 + x^2] + Sqrt[(b - x)^2 + c^2], x]
number theory
mathematicamaximapari/gp
number testsIntegerQ[7]
PrimeQ[7]
rational test?
real test?
integerp(7)
primep(7)
ratnump(1/7)
solve diophantine equationSolve[a^2 + b^2 == c^2 &&
a > 0 && a < 10 &&
b > 0 && b < 10 &&
c > 0 && c < 10,
{a, b, c}, Integers]
factorial10!10!10!
binomial coefficientBinomial[10,3]binomial(10,3)
greatest common divisorGCD[14, 21]gcd(14, 21)gcd(14, 21)
prime factorsreturns {{2, 2}, {3, 1}, {7, 1}}
FactorInteger[84]
factor(84)returns [2,2; 3,1; 7,1]
factor(84)
Euler totientEulerPhi[256]totient(256)
vectors
mathematicamaximapari/gp
vector literal(* same as array: *)
{1, 2, 3}
/* same as list: */
[1, 2, 3]
[1, 2, 3]
vector coordinateindices start at one:
{1,v2, 3}[[1]]
indices start at one:
[1, 2, 3][1]
indices start at one:
[1, 2, 3][1]
vector dimension
 
Length[{1, 2, 3}]length([1, 2, 3])length([1, 2, 3])
element-wise arithmetic operators+ - * /
adjacent lists are multiplied element-wise
+ - * /+ -
vector length mismatch
 
errorerrorerror
scalar multiplication3 {1, 2, 3}
{1, 2, 3} 3
* may also be used
3 * [1, 2, 3]
[1, 2, 3] * 3
3 * [1, 2, 3]
[1, 2, 3] * 3
dot product{1, 1, 1} . {2, 2, 2}
Dot[{1, 1, 1}, {2, 2, 2}]
[1,1,1] . [2,2,2]
cross productCross[{1, 0, 0}, {0, 1, 0}]load("vect");

express([1, 0, 0] ~ [0, 1, 0]);
normsNorm[{1, 2, 3}, 1]
Norm[{1, 2, 3}]
Norm[{1, 2, 3}, Infinity]
matrices
mathematicamaximapari/gp
literal or constructorA = {{1, 2}, {3, 4}}
B = {{4, 3}, {2, 1}}
A: matrix([1, 2], [3, 4]);
B: matrix([4, 3], [2, 1]);
A = [1, 2; 3, 4]
B = [4, 3; 2, 1]
zero, identity, ones, diagonal matrixConstantArray[0, {3, 3}]
IdentityMatrix[3]
ConstantArray[1, {3, 3}]
DiagonalMatrix[{1, 2, 3}]
zeromatrix(3, 3)
ident(3)
1 + zeromatrix(3, 3)
diag_matrix(1, 2, 3)
dimensions
rows, columns
Length[A]
Length[A[[1]]]
matrix_size(A)[1]
matrix_size(A)[2]
element accessA[[1, 1]]A[1, 1]A[1, 1]
row accessA[[1]]as list:
A[1]
as 1xn matrix:
row(A, 1)
column accesscol(A, 1)
submatrix access# [[1]] & /@ A
scalar multiplication3 A
A 3
* can also be used
3 * A
A * 3
element-wise operators+ - * /
adjacent matrices are multiplied element-wise
+ - * /
multiplicationA . BA . B
kronecker productKroneckerProduct[A, B]kronecker_product(A, B);
comparisonA == B
A != B
is(A = B)
is(A # B)
normsNorm[A, 1]
Norm[A]
Norm[A, Infinity]
Norm[A, "Frobenius"]
transposeTranspose[A]
conjugate transposeA = {{I, 2 I}, {3 I, 4 I}}
ConjugateTranspose[A]
inverseInverse[A]
determinantDet[A]matdet(A)
traceTr[A]trace(A)
eigenvaluesEigenvalues[A]
eigenvectorsEigenvectors[A]
system of equationsSolve[A. {x, y} == { 2, 3}, {x, y}]
distributions
mathematicamaximapari/gp
normalnd = NormalDistribution[0,1]
RandomVariate[nd]
load(distrib);
random_normal(0,1);
exponentialed = ExponentialDistribution[1]
RandomVariate[ed]
load(distrib);
random_exp(1);
poissonpd = PoissonDistribution[1]
RandomVariate[pd]
load(distrib);
random_poisson(1);
univariate charts
mathematicamaximapari/gp
5039793334_f76edece33_m.jpgvertical bar chartBarChart[{7, 3, 8, 5, 5},
  ChartLegends->
    {"a","b","c","d","e"}]
5039776078_cc38a4ff5f_m.jpg
horizontal bar chart
BarChart[{7, 3, 8, 5, 5}, BarOrigin -> Left]
5037819710_d932767cd5_m.jpg pie chartPieChart[{7, 3, 8, 5, 5}]
5037399669_13c8e585e0_m.jpg
stem-and-leaf plot
Needs["StatisticalPlots`"]
nd = NormalDistribution[0, 1]
n100 = RandomVariate[nd, 100]
StemLeafPlot[20 * n100]
5037415497_4c6fbfcab2_m.jpghistogramnd = NormalDistribution[0, 1]
Histogram[RandomReal[nd, 100], 10]
5037525393_7ac86e81c3_m.jpg box-and-whisker plotnd = NormalDistribution[0, 1]
n100 = RandomVariate[nd, 100]
BoxWhiskerChart[d]

ed = ExponentialDistribution[1]
e100 = RandomVariate[ed, 100]
u100 = RandomReal[1, 100]
d = {n100, e100, u100}
BoxWhiskerChart[d]
set chart titleBoxWhiskerChart[data,
  PlotLabel -> "chart example"]
chart optionsPlotLabel -> "an example"

AxisLabel -> {"time", "distance"}
bivariate charts
mathematicamaximapari/gp
5039126187_e340b3f4aa_m.jpg
stacked bar chart
d = {{7, 1}, {3, 2}, {8, 1},
  {5, 3}, {5, 1}}
BarChart[d, ChartLayout ->
  "Stacked"]
5267212089_a7749bbe3e_s.jpgscatter plotnd = NormalDistribution[0, 1]
rn = Function[RandomReal[nd]]
d = {rn[],rn[]} & /@ Range[1,50]
ListPlot[d]
5267975488_2216ae147e_s.jpglinear regression lined = Table[{i,
  2 i + RandomReal[{-5, 5}]},
  {i, 0, 20}]
model = LinearModelFit[d, x, x]
Show[ListPlot[d],
  Plot[model["BestFit"],
    {x, 0, 20}]]
5267434941_f8537c9d26_s.jpgpolygonal line plotf = Function[i, {i, rn[]}]
d = f /@ Range[1, 20]
ListLinePlot[d]
5268071368_75c3aee42e_t.jpgarea chartd = {{7, 1, 3, 2, 8},
  {1, 5, 3, 5, 1}}
sd = {d[[1]], d[[1]] + d[[2]]}
ListLinePlot[sd, Filling ->
  {1 -> {Axis, LightBlue},
   2 -> {{1}, LightRed}}]
5268229340_0b96b5e223_s.jpgcubic splined = Table[{i, RandomReal[nd]},
  {i, 0, 20}]
f = Interpolation[d,
  InterpolationOrder -> 3]
Show[ListPlot[d],
  Plot[f[x], {x, 0, 20}]]
5268208606_b745646ea6_s.jpgfunction plotPlot[Sin[x], {x, -4, 4}]plot2d(sin(x),[x,-4,4]);ploth(x=-4, 4, sin(x))
5267567389_27a19429e4_s.jpgquantile-quantile plotnd = NormalDistribution[0, 1]
d1 = RandomReal[1, 50]
d2 = RandomReal[nd, 50]
QuantilePlot[d1, d2]
axis labeld = Table[{i, i^2}, {i, 1, 20}]
ListLinePlot[d,
  AxesLabel -> {x, x^2}]
plot2d(sin(x), [x,-4,4], [ylabel,"sine function"]);
logarithmic y-axisLogPlot[{x^2, x^3, x^4, x^5},
  {x, 0, 20}]
trivariate charts
mathematicamaximapari/gp
3d scatter plotnd = NormalDistribution[0,1]
d = RandomReal[nd, {50, 3}]
ListPointPlot3D[d]
5268191292_a75a367c39_s.jpgadditional data setnd = NormalDistribution[0, 1]
x1 = RandomReal[nd, 20]
x2 = RandomReal[nd, 20]
ListLinePlot[{x1, x2}]
bubble chartnd = NormalDistribution[0,1]
d = RandomReal[nd, {50, 3}]
BubbleChart[d]
surface plotPlot3D[Sinc[Sqrt[x^2 + y^2]],
  {x, -25, 25},
  {y, -25, 25}]
sinc(x) := sin(%pi*x)/(%pi*x);sinc(x) := sin(%pi*x)/(%pi*x);
plot3d(sinc(sqrt(x^2+y^2)),[x,-25,25],[y,-25,25]);
__________________________________________________________________________________________________________________________________________________________________

version used

The version of software used to check the examples in the reference sheet.

show version

How to determine the version of an installation.

Grammar and Invocation

interpreter

How to execute a script.

pari/gp

The shebang style notation doesn't work because GP doesn't recognize the hash tag # as the start of a comment.

The -q option suppresses the GP startup message.

After the script finishes it will drop the user into the REPL unless there is a quit statement in the script:

print("Hello, World!")

quit

repl

How to launch a command line read-eval-print loop for the language.

mathematica:

One can create a REPL called math on Mac OS X with the following command:

$ sudo ln -s /Applications/Mathematica.app/Contents/MacOS/MathKernel /usr/local/bin/math

$ math

block delimiters

How blocks are delimited.

statement separator

How statements are separated.

end-of-line comment

Character used to start a comment that goes to the end of the line.

multiple line comment

Variables and Expressions

assignment

How to perform assignment.

In all three languages an assignment is an expression that evaluates to the right side of the expression. Assignments can be chained to assign the same value to multiple variables.

mathematica:

The Set function behaves identically to assignment and can be nested:

Set[a, Set[b, 3]]

parallel assignment

How to assign values in parallel.

Parallel assignment can be used to swap the values held in two variables.

compound assignment

The compound assignment operators.

increment and decrement

null

null test

How to test if a value is null.

undefined variable access

remove variable binding

How to remove a variable. Subsequent references to the variable will be treated as if the variable were undefined.

conditional expression

A conditional expression.

Arithmetic and Logic

true and false

The boolean literals.

falsehoods

Values which evaluate to false in a conditional test.

logical operators

The boolean operators.

relational operators

The relational operators.

arithmetic operators

The arithmetic operators.

integer division

How to compute the quotient of two integers.

integer division by zero

The result of dividing an integer by zero.

float division

How to perform float division, even if the arguments are integers.

float division by zero

The result of dividing a float by zero.

power

How to compute exponentiation.

Note that zero to a negative power is equivalent to division by zero, and negative numbers to a fractional power may have multiple complex solutions.

sqrt

The square root function.

For positive arguments the positive square root is returned.

sqrt -1

How the square root function handles negative arguments.

mathematica:

An uppercase I is used to enter the imaginary unit, but Mathematica displays it as a lowercase i.

transcendental functions

The standard transcendental functions such as one might find on a scientific calculator.

The functions are the exponential (not to be confused with exponentiation), natural logarithm, sine, cosine, tangent, arcsine, arccosine, arctangent, and the two argument arctangent.

transcendental constants

The transcendental constants pi and e.

The transcendental functions can used to computed to compute the transcendental constants:

pi = acos(-1)
pi = 4 * atan(1)
e = exp(1)

float truncation

Ways to convert a float to a nearby integer.

absolute value

How to get the absolute value and signum of a number.

integer overflow

What happens when the value of an integer expression cannot be stored in an integer.

The languages in this sheet all support arbitrary length integers so the situation does not happen.

float overflow

What happens when the value of a floating point expression cannot be stored in a float.

rational construction

How to construct a rational number.

rational decomposition

How to extract the numerator and denominator from a rational number.

complex construction

How to construct a complex number.

complex decomposition

How to extract the real and imaginary part from a complex number; how to extract the argument and modulus; how to get the complex conjugate.

random number

How to generate a random integer or a random float.

random seed

How to set or get the random seed.

maxima:

The seed is set to a fixed value at start up.

pari/gip:

The seed is set to a fixed value at start up.

mathematica:

The seed is not set to the same value at start up.

binary, octal, and hex literals

Binary, octal, and hex integer literals.

mathematica:

The notation works for any base from 2 to 36.

Strings

string literals

newline in literal

character access

chr and ord

length

concatenate

index of substring

extract substring

split

convert from string, to string

How to convert strings to numbers and vice versa.

join

trim

case manipulation

sprintf

Regular Expressions

regex test

How to test whether a string matches a regular expression.

regex substitution

How to replace substrings which match a regular expression.

Arrays

literal

The notation for an array literal.

size

The number of elements in the array.

empty test

How to test whether an array is empty.

lookup

How to access an array element by its index.

update

How to change the value stored at an array index.

out-of-bounds behavior

What happens when an attempt is made to access an element at an out-of-bounds index.

element index

How to get the index of an element in an array.

slice

How to extract a subset of the elements. The indices for the elements must be contiguous.

array of integers as index

manipulate back

manipulate front

head

tail

cons

concatenate

replicate

copy

How to copy an array. Updating the copy will not alter the original.

iterate

reverse

sort

dedupe

membership

How to test whether a value is an element of a list.

intersection

How to to find the intersection of two lists.

union

How to find the union of two lists.

relative complement, symmetric difference

How to find all elements in one list which are not in another; how to find all elements which are in one of two lists but not both.

map

filter

reduce

universal and existential tests

min and max element

shuffle and sample

How to shuffle an array. How to extract a random sample from an array without replacement.

zip

How to interleave two arrays.

Sequences

Multidimensional Arrays

Dictionaries

record literal

record member access

Functions

definition

invocation

function value

Execution Control

if

How to write a branch statement.

mathematica:

The 3rd argument (the else clause) of an If expression is optional.

while

How to write a conditional loop.

mathematica:

Do can be used for a finite unconditional loop:

Do[Print[foo], {10}]

for

How to write a C-style for statement.

break/continue

How to break out of a loop. How to jump to the next iteration of a loop.

raise exception

How to raise an exception.

handle exception

How to handle an exception.

finally block

How to write code that executes even if an exception is raised.

Files

Libraries and Namespaces

Reflection

]function-documentation]

function documentation

How to get the documentation for a function.

Algebra

Calculus

Number Theory

Vectors

vector literal

The notation for a vector literal.

vector coordinate

How to get one of the coordinates of a vector.

vector dimension

How to get the number of coordinates of a vector.

element-wise arithmetic operators

How to perform an element-wise arithmetic operatio on vectors.

vector length mismatch

What happens when an element-wise arithmetic operation is performed on vectors of different dimension.

scalar multiplication

How to multiply a scalar with a vector.

dot product

How to compute the dot product of two vectors.

cross product

How to compute the cross product of two three-dimensional vectors.

norms

How to compute the norm of a vector.

Matrices

literal or constructor

Literal syntax or constructor for creating a matrix.

mathematica:

Matrices are represented as lists of lists. No error is generated if one of the rows contains too many or two few elements. The MatrixQ predicate can be used to test whether a list of lists is matrix: i.e. all of the sublists contain numbers and are of the same length.

Matrices are displayed by Mathematica using list notation. To see a matrix as it would be displayed in mathematical notation, use the MatrixForm function.

dimensions

How to get the dimensions of a matrix.

element access

How to access an element of a matrix. All languages described here follow the convention from mathematics of specifying the row index before the column index.

row access

How to access a row.

column access

How to access a column.

submatrix access

How to access a submatrix.

scalar multiplication

How to multiply a matrix by a scalar.

element-wise operators

Operators which act on two identically sized matrices element by element. Note that element-wise multiplication of two matrices is used less frequently in mathematics than matrix multiplication.

multiplication

How to multiply matrices. Matrix multiplication should not be confused with element-wise multiplication of matrices. Matrix multiplication in non-commutative and only requires that the number of columns of the matrix on the left match the number of rows of the matrix. Element-wise multiplication, by contrast, is commutative and requires that the dimensions of the two matrices be equal.

kronecker product

The Kronecker product is a non-commutative operation defined on any two matrices. If A is m x n and B is p x q, then the Kronecker product is a matrix with dimensions mp x nq.

comparison

How to test two matrices for equality.

norms

How to compute the 1-norm, the 2-norm, the infinity norm, and the frobenius norm.

Distributions

univariate-charts Univariate Charts

A univariate chart can be used to display a list or array of numerical values. Univariate data can be displayed in a table with a single column or two columns if each numerical value is given a name. A multivariate chart, by contrast, is used to display a list or array of tuples of numerical values.

In order for a list of numerical values to be meaningfully displayed in a univariate chart, it must be meaningful to perform comparisons (<, >, =) on the values. Hence the values should have the same unit of measurement.

vertical bar chart

A chart which represents values with rectangular bars which line up on the bottom. It is a deceptive practice for the bottom not to represent zero, even if a y-axis with labelled tick marks or grid lines is provided. A cut in the vertical axis and one of the bars may be desirable if the cut value is a large outlier. Putting such a cut all of the bars near the bottom is a deceptive practice similar not taking to the base of the bars to be zero, however.

Another bad practice is the 3D bar chart. In such a chart heights are represented by the height of what appear to be three dimensional blocks. Such charts impress an undiscriminating audience but make it more difficult to make a visual comparison of the charted quantities.

mathematica

horizontal bar chart

A bar chart in which zero is the y-axis and the bars extend to the right.

pie chart

A bar chart displays values using the areas of circular sectors or equivalently, the lengths of the arcs of those sectors. A pie chart implies that the values are percentages of a whole. The viewer is likely to make an assumption about what the whole circle represents. Thus, using a pie chart to show the revenue of some companies in a line of business could be regarded as deceptive if there are other companies in the same line of business which are left out. The viewer may mistakenly assume the whole circle represents the total market.

If two values are close in value, people cannot determine visually which of the corresponding sectors in a pie chart is larger without the aid of a protractor. For this reason many consider bar charts superior to pie charts.

Many software packages make 3D versions of pie charts which communicate no additional information and in fact make it harder to interpret the data.

stem-and-leaf plot

histogram

box-and-whisker plot

set chart title

Bivariate Charts

stacked bar chart

Trivariate Charts

Mathematica

Mathematica Documentation Center
WolframAlpha

Maxima

Maxima Manual

Pari/GP

A Tutorial for Pari/GP (pdf)
Pari/GP Functions by Category
Pari/GP Reference Card (pdf)


源地址:http://hyperpolyglot.org/computer-algebra


posted @ 2013-03-31 19:41  大白技术控  阅读(664)  评论(0编辑  收藏  举报