AYE89

coding & learning

导航

CNN卷积层基础:特征提取+卷积核+反向传播

Posted on 2017-11-21 18:03  AYE89  阅读(1522)  评论(0编辑  收藏  举报

本篇介绍卷积层的线性部分

一、与全连接层相比卷积层有什么优势

卷积层可以节省参数,因为卷积运算利用了图像的局部相关性——分析出一小片区域的特点,加上Pooling层(汇集、汇聚),从附近的卷积结果中再采样选择一些高价值的信息,让特征向少而精的方向前进。

全连接层相当于考虑全局(整张图像)的特征

 

二、卷积的另一种解释

傅里叶变换:将数据从空间域的展示形式转变到频率域的形式。

理解:图像比作一道做好的菜,傅里叶变换就是找出这道菜具体 的配料及各种配料的用量。

图像中,低频信息是大体轮廓(整体),高频信息是图中物体的纹理特征

 

若A, B是矩阵,下面两式是等价的

C=conv2(A, B)

C=IFFT(FFT(A) * FFT(B))   #这里*是“元素级别的乘法”

 

卷积核做傅里叶变换,可以看出高/低频信号的强度

由于最终要进行元素级的乘法,如果卷积核在某个频率的数值比较低,经过乘法后的输入数据在这个频率的数据也会变小。滤波核在某个频率的数值为0,说明卷积算法计算后会舍弃这部分信息。

Gabor Filter,保留高频舍弃低频,一些文章宣称自己的模型第一层的参数像Gabor Filter。

 

所以,从傅里叶变换来看,卷积层的意义——

分离低频和高频信息,使它们能够被分别处理。

 

三、卷积层的反向传播

计算参数:

1卷积层输入图像(数据)X对目标函数的偏导数

2卷积层线性部分参数W对目标函数的偏导数

 

解法 

A:按卷积定义求解,需要计算:

1前向计算图

2下层Loss

3本层w导数

B:转换后的解法,软件库中常用套路

将卷积运算转换为矩阵和向量的点积——

输入数据被转换成了一个size更大的矩阵(为了适应矩阵式的卷积操作有些元素需要重复出现)

卷积核被转换成了一个向量

 

软件库选择矩阵式解法的原因:矩阵乘法运算经过多年的研究,运算效率非常有保障。按定义的卷积运算性能较差。