每天一道算法题(19)——最近公共父节点问题
题目:
给定一颗二叉树,以及其中的两个node(地址均非空),要求给出这两个node的一个公共父节点,使得这个父节点与两个节点的路径之和最小。描述你程序的最坏时间复杂度,并实现具体函数,函数输入输出请参考如下的函数原型:
strucy TreeNode{ TreeNode* left; //指向左子树 TreeNode* right; //指向右子树 TreeNode* father; //指向父亲节点 }; TreeNode* LowestCommonAncestor(TreeNode* first,TreeNode* second){ }
方法1:
算法复杂度为O(n)。
先查找高度。然后类似于查找两条链表第一个公共节点的方法进行遍历比较:
int getHeight(TreeNode *node) { int height = 0; while (node) { height++; node = node->parent; } return height; } TreeNode* LowestCommonAncestor(TreeNode* first,TreeNode* second) { int height1 = getHeight(first), height2 = getHeight(second), diff = height1 - height2; if (diff < 0) { diff = -diff; while(diff--) { second = second->parent; } } else { while(diff--) { first = first->parent; } } while (first != second) {//同步遍历 first = first->parent; second = second->parent; } return first; }
方法2:
使用辅助存储空间。两个栈依次压入从该节点到根节点的指针。依次弹出栈比较节点。。
TreeNode* LowestCommonAncestor(TreeNode* first,TreeNode* second){ if(!first||!second) return; if(first==second) return first; stack<node> s1; stack<node> s2; node t1,t2; while(!first){ s1.push(first); first=first->father; } while(!second){ s2.push(second); first=first->father; } while(!s1.empty()&&!s2.empty()){ t1=s1.top();s1.pop(); t2=s2.top();s2.pop(); if(t1!=t2) return NULL; else if((t1==t2)&&!s1.empty()&&!s2.empty()&&(s1.top()!=s2.top()))//当前节点相等,下一级不相等 return t1; else if((t1==t2)&&(s1.empty()||s2.empty()))//当前节点相等,下一级为空 return t1; } return NULL; }
考虑特殊情况,即二叉树为二叉查找数的情况:
TreeNode* LowestCommonAncestor(TreeNode* head,TreeNode* first,TreeNode* second){ if(!first||!second) return; if(first==second) return first; if(first->value>second->value){ TreeNode* t; t=first; first=second; second=first; } if(first->value>head->value) return LowestCommonAncestor(head->right,first,second); else if(second->value<head->value) return LowestCommonAncestor(head->left,first,second); else return head; }