SVD(奇异值分解)小结

注:奇异值分解在数据降维中有较多的应用,这里把它的原理简单总结一下,并且举一个图片压缩的例子,最后做一个简单的分析,希望能够给大家带来帮助。

1、特征值分解(EVD)

实对称矩阵

在理角奇异值分解之前,需要先回顾一下特征值分解,如果矩阵\(A\)是一个\(m\times m\)实对称矩阵(即\(A = A^T\)),那么它可以被分解成如下的形式

\[A = Q\Sigma Q^T= Q\left[ \begin{matrix} \lambda_1 & \cdots & \cdots & \cdots\\ \cdots & \lambda_2 & \cdots & \cdots\\ \cdots & \cdots & \ddots & \cdots\\ \cdots & \cdots & \cdots & \lambda_m\\ \end{matrix} \right]Q^T \tag{1-1} \]

其中\(Q\)为标准正交阵,即有\(QQ^T = I\)\(\Sigma\)为对角矩阵,且上面的矩阵的维度均为\(m\times m\)\(\lambda_i\)称为特征值\(q_i\)\(Q\)(特征矩阵)中的列向量,称为特征向量

注:\(I\)在这里表示单位阵,有时候也用\(E\)表示单位阵。式(1-1)的具体求解过程就不多叙述了,可以回忆一下大学时的线性代数。简单地有如下关系:\(Aq_i = \lambda_i q_i, \quad q_i^T q_j = 0(i \ne j)\)

一般矩阵

上面的特征值分解,对矩阵有着较高的要求,它需要被分解的矩阵\(A\)为实对称矩阵,但是现实中,我们所遇到的问题一般不是实对称矩阵。那么当我们碰到一般性的矩阵,即有一个\(m \times n\)的矩阵\(A\),它是否能被分解成上面的式(1-1)的形式呢?当然是可以的,这就是我们下面要讨论的内容。

2、奇异值分解(SVD)

2.1 奇异值分解定义

有一个\(m \times n\)的实数矩阵\(A\),我们想要把它分解成如下的形式

\[A = U\Sigma V^T \tag{2-1} \]

其中\(U\)\(V\)均为单位正交阵,即有\(UU^T=I\)\(VV^T=I\)\(U\)称为左奇异矩阵\(V\)称为右奇异矩阵\(\Sigma\)仅在主对角线上有值,我们称它为奇异值,其它元素均为0。上面矩阵的维度分别为\(U \in R^{m\times m},\ \Sigma \in R^{m\times n},\ V \in R^{n\times n}\)

一般地\(\Sigma\)有如下形式

\[\Sigma = \left[ \begin{matrix} \sigma_1 & 0 & 0 & 0 & 0\\ 0 & \sigma_2 & 0 & 0 & 0\\ 0 & 0 & \ddots & 0 & 0\\ 0 & 0 & 0 & \ddots & 0\\ \end{matrix} \right]_{m\times n} \]

fig svd_note1.svg
图1-1 奇异值分解

对于奇异值分解,我们可以利用上面的图形象表示,图中方块的颜色表示值的大小,颜色越浅,值越大。对于奇异值矩阵\(\Sigma\),只有其主对角线有奇异值,其余均为0。

2.2 奇异值求解

正常求上面的\(U,V,\Sigma\)不便于求,我们可以利用如下性质

\[AA^T=U\Sigma V^TV\Sigma^TU^T=U\Sigma \Sigma^TU^T \tag{2-2} \]

\[A^TA=V\Sigma^TU^TU\Sigma V^T=V\Sigma^T\Sigma V^T \tag{2-3} \]

注:需要指出的是,这里\(\Sigma\Sigma^T\)\(\Sigma^T\Sigma\)在矩阵的角度上来讲,它们是不相等的,因为它们的维数不同\(\Sigma\Sigma^T \in R^{m \times m}\),而\(\Sigma^T\Sigma \in R^{n \times n}\),但是它们在主对角线的奇异值是相等的,即有

\[\Sigma\Sigma^T = \left[ \begin{matrix} \sigma_1^2 & 0 & 0 & 0\\ 0 & \sigma_2^2 & 0 & 0\\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \ddots \\ \end{matrix} \right]_{m\times m}\quad \Sigma^T\Sigma = \left[ \begin{matrix} \sigma_1^2 & 0 & 0 & 0\\ 0 & \sigma_2^2 & 0 & 0\\ 0 & 0 & \ddots & 0\\ 0 & 0 & 0 & \ddots\\ \end{matrix} \right]_{n\times n} \]

可以看到式(2-2)与式(1-1)的形式非常相同,进一步分析,我们可以发现\(AA^T\)\(A^TA\)也是对称矩阵,那么可以利用式(1-1),做特征值分解。利用式(2-2)特征值分解,得到的特征矩阵即为\(U\);利用式(2-3)特征值分解,得到的特征矩阵即为\(V\);对\(\Sigma\Sigma^T\)\(\Sigma^T\Sigma\)中的特征值开方,可以得到所有的奇异值。

3、奇异值分解应用

3.1 纯数学例子

假设我们现在有矩阵\(A\),需要对其做奇异值分解,已知

\[A = \left[ \begin{matrix} ​ 1 & 5 & 7 & 6 & 1 \cr ​ 2 & 1 & {10} & 4 & 4 \cr ​ 3 & 6 & 7 & 5 & 2 \cr \end{matrix} \right] \]

那么可以求出\(AA^T\)\(A^TA\),如下

\[AA^T = \left[ \begin{matrix} ​ 112 & 105 & 114 \cr ​ 105 & 137 & 110 \cr ​ 114 & 110 & 123 \cr \end{matrix} \right] \quad A^TA = \left[ \begin{matrix} ​ 14 & 25 & 48 & 29 & 15 \\ ​ 25 & 62 & 87 & 64 & 21 \\ ​ 48 & 87 & 198 & 117 & 61 \\ ​ 29&64&117&77&32\\ ​ 15&21&61&32&21 \end{matrix} \right] \]

分别对上面做特征值分解,得到如下结果

U = 
[[-0.55572489, -0.72577856,  0.40548161],
 [-0.59283199,  0.00401031, -0.80531618],
 [-0.58285511,  0.68791671,  0.43249337]]

V = 
[[-0.18828164, -0.01844501,  0.73354812,  0.65257661,  0.06782815],
 [-0.37055755, -0.76254787,  0.27392013, -0.43299171, -0.17061957],
 [-0.74981208,  0.4369731 , -0.12258381, -0.05435401, -0.48119142],
 [-0.46504304, -0.27450785, -0.48996859,  0.39500307,  0.58837805],
 [-0.22080294,  0.38971845,  0.36301365, -0.47715843,  0.62334131]]

奇异值\(\Sigma = \text{Diag}(18.54, 1.83, 5.01)\)

3.2 在图像压缩中的应用

准备工具

下面的代码运行环境为python3.6+jupyter5.4

SVD(Python)

这里暂时用numpy自带的svd函数做图像压缩。

①读取图片

%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

img_eg = mpimg.imread("../img/beauty.jpg")
print(img_eg.shape)

图片的大小是\(600\times 400 \times 3\)

②奇异值分解

img_temp = img_eg.reshape(600, 400 * 3)
U,Sigma,VT = np.linalg.svd(img_temp)

我们先将图片变成\(600\times 1200\),再做奇异值分解。从svd函数中得到的奇异值sigma它是从大到小排列的。

③取前部分奇异值重构图片

# 取前60个奇异值
sval_nums = 60
img_restruct1 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot(VT[0:sval_nums,:])
img_restruct1 = img_restruct1.reshape(600,400,3)

# 取前120个奇异值
sval_nums = 120
img_restruct2 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot(VT[0:sval_nums,:])
img_restruct2 = img_restruct2.reshape(600,400,3)

将图片显示出来看一下,对比下效果

fig, ax = plt.subplots(1,3,figsize = (24,32))

ax[0].imshow(img_eg)
ax[0].set(title = "src")
ax[1].imshow(img_restruct1.astype(np.uint8))
ax[1].set(title = "nums of sigma = 60")
ax[2].imshow(img_restruct2.astype(np.uint8))
ax[2].set(title = "nums of sigma = 120")
fig svd_note2.png
图3-1 奇异值重构图片

可以看到,当我们取到前面120个奇异值来重构图片时,基本上已经看不出与原图片有多大的差别。

注:上面的美女图片源于网络,侵删。

总结

从上面的图片的压缩结果中可以看出来,奇异值可以被看作成一个矩阵的代表值,或者说,奇异值能够代表这个矩阵的信息。当奇异值越大时,它代表的信息越多。因此,我们取前面若干个最大的奇异值,就可以基本上还原出数据本身。

如下,可以作出奇异值数值变化和前部分奇异值和的曲线图,如下图所示

fig svd_note3.svg
奇异值变化图

从上面的第1个图,可以看出,奇异值下降是非常快的,因此可以只取前面几个奇异值,便可基本表达出原矩阵的信息。从第2个图,可以看出,当取到前100个奇异值时,这100个奇异值的和已经占总和的95%左右。

最后,还有一点需要提到的是,如果自己想不调用np.linalg.svd函数,手动实现奇异值分解的话,单纯利用第2小节的内容实现,有点不够,有个问题需要注意。这里暂时不多做讨论了,大家有兴趣可以看我下面分享的《SVD(奇异值分解)Python实现》,重点可以看看其中SVD算法实现

posted @ 2018-11-28 18:30  EndlessCoding  阅读(181098)  评论(27编辑  收藏  举报