实验一    分类技术及其应用

实习要求: 基于线性回归模型拟合一个班学生的学习成绩,建立预测模型。数据可由自己建立100个学生的学习成绩。

1)    算法思想:

最小二乘法
设经验方程是y=F(x),方程中含有一些待定系数an,给出真实值{(xi,yi)|i=1,2,...n},将这些x,y值 代入方程然后作差,可以描述误差:yi-F(xi),为了考虑整体的误差,可以取平方和,之所以要平方是考虑到误差可正可负直接相加可以相互抵消,所以记 误差为:

e=∑(yi-F(xi))^2

它是一个多元函数,有an共n个未知量,现在要求的是最小值。所以必然满足对各变量的偏导等于0,于是得到n个方程:

de/da1=0
de/da2=0
...
de/dan=0

n个方程确定n个未知量为常量是理论上可以解出来的。用这种误差分析的方法进行回归方程的方法就是最小二乘法。

线性回归
如果经验方程是线性的,形如y=ax+b,就是线性回归。按上面的分析,误差函数为:

e=∑(yi-axi-b)^2

各偏导为:

de/da=2∑(yi-axi-b)xi=0
de/db=-2∑(yi-axi-b)=0

于是得到关于a,b的线性方程组:

(∑xi^2)a+(∑xi)b=∑yixi
(∑xi)a+nb=∑yi

设A=∑xi^2,B=∑xi,C=∑yixi,D=∑yi,则方程化为:

Aa+Bb=C
Ba+nb=D

解出a,b得:

a=(Cn-BD)/(An-BB)
b=(AD-CB)/(An-BB)

2)    编程实现算法

C++程序:

#include<iostream>

#include<math.h>

using namespace std;

void main()

{

   double x,y,A=0.0,B=0.0,C=0.0,D=0.0,delta,a,b;

   int n,sno,avgstudy;

   cout<<"请拟合输入样本数目"<<endl;

   cin>>n;

   for(int i=0;i<n;++i)

 

   {  cout<<"请输入第"<<i+1<<"个学生学号"<<endl;

      cin>>sno;

   cout<<"请输入学生上自习时间,按照每天小时计算"<<endl;

            cin>>x;

       cout<<"请输入学生请输入平均成绩"<<endl;   

      cin>>y;

      A+=x*x;

      B+=x;

      C+=x*y;

      D+=y;

   }

    delta=A*n-B*B;

   a=((C*n-B*D)/delta);

   b=((A*D-C*B)/delta);

   cout<<"a="<<a<<"b="<<b<<endl;

   if(fabs(delta)<1e-10)

   {

      cerr<<"Error!Divide by zero"<<endl;

 

   }

   else

   {

     cout<<"a="<<((C*n-B*D)/delta)<<endl

 

             <<"b="<<((A*D-C*B)/delta)<<endl;

 

   }

   cout<<"输入您想预测的成绩,先输入平均日自习时间(小时)"<<endl;

          cin>>avgstudy;

          cout<<a*avgstudy+b;

}

}

3)    输出运算结果

输入是将各个同学的上自习的时间 按照小时计算

比如(4,85)(5,94),将成绩和上自习时间进行相应的线性回归

,推导出相应的线型方程,以便今后对其他学生上自习以及成绩的估测。

 

 

 

 

 

实习二    聚类技术及其应用

实习题1  编程验证单连接凝聚聚类算法,实验数据可使用第五章表5.2 的数据进行。要求输出层次聚类过程中每一步的聚类结果。

实习题利用K-均值聚类算法对如下数据进行聚类,其中输入K=3,数据集为

{ 2,4,10,12,3,20,30,11,25,23,34,22} 。

要求输出每个类及其中的元素。

1)算法基本思想的描述

Given k, the k-means algorithm is implemented in four steps:

    – Partition objects into k nonempty subsets

    – Compute seed points as the centroids of the  clusters of the  current partition (the centroid is the center, i.e., mean point, of the cluster)

   – Assign each object to the cluster with the nearest  seed point

   – Go back to Step 2, stop when no more new assignment

2)编程实现算法

 

//***********引入库函数

 

#include "iostream.h"

#include "math.h"

#include "stdlib.h"

#include "iomanip.h"

#include "time.h"

#include "fstream.h"

 

//*************定义常量

const int TRUE=1;

const int FALSE=0;

const int MarkovLengh=10000;

const int MaxInnerLoop=10000;

const int MaxOuterLoop=60;

const double CO=0.1;

const double DeclineRate=0.95;

const long MAX=100000;

const int AcceptRate=1;

const double ForceDecline=0.9;

 

 

//************定义全局变量

 

int DataNum;               //聚类样本数目

int Dimension;             //样本维数

int K;                     //分类数

double *DataSet;            //指向浮点型的指针

int HALT=0;

int Row=3;

 

 

 

//***************************************************************

//  类GETDATA:设定全局变量,维数,样本数,和类别数等        *** 

//               随机生成样本或手工输入样本的类              ***

//***************************************************************

 

 

class GETDATA{

 

public: 

     GETDATA();

     void Display();

     void Initial();

     void Input();

     double FRand(double,double);

    double rand1,rand2;          //随机数的高低值

 

};

 

GETDATA::GETDATA()

{

     int i,j;

     Dimension=2;

     DataNum=50;

     K=4;

     DataSet=new double[Dimension*DataNum];

     for(i=0;i<DataNum;i++)

     {

         for(j=0;j<Dimension;j++)

              DataSet[i*Dimension+j]=(((double)rand()/(double)RAND_MAX)*100);

     }

}

 

//*****************显示当前待聚类的样本(维数,个数,类别数等)

 

void GETDATA::Display()

{

     int i,j;

         cout<<" 当前样本集如下:"<<endl<<" {"<<endl;

         for(i=0;i<DataNum;i++)

              {

                   cout<<" [";

                   for(j=0;j<Dimension;j++)

                       {

                           cout<<" "<<setw(8)<<DataSet[i*Dimension+j];                           

                       }

                   cout<<" ]  ";

                   if((i+1)%Row==0)

                       cout<<endl;

         }   

         cout<<endl<<" }"<<endl;

 

         cout<<endl<<" 以上实数样本集由计算机在---100之间随机产,其中:"<<endl;

 

     cout<<endl<<" 样本维数Dimension= "<<Dimension<<endl;

     cout<<" 样本数  DataNum= "<<DataNum<<endl;

     cout<<" 类别数  K= "<<K<<endl;

}

 

 

//****************输入待聚类样本,包括维数,个数,类别数等

 

void GETDATA::Input()

{

     char flag;

     int i,j;

     double s=0;

     cout<<endl<<" 请依次输入: 维数 样本数目 类别数"<<endl;

     cout<<endl<<" 维数Dimension: ";

     cin>>Dimension;

     cout<<endl<<" 样本数目DataNum: ";

     cin>>DataNum;

     cout<<endl<<" 类别数K:";

     cin>>K;

     cout<<endl<<" 随机生成数据输入R  人工输入按B: "<<endl;  delete[]DataSet;

     DataSet=new double[Dimension*DataNum];   

     cin>>flag;

     if(flag=='R'||flag=='r')

     {

         cout<<" 输入随机数生成范围(最小值和最大值):"

              <<endl<<" 最小值:";

         cin>>rand1;

         cout<<endl<<" 最大值:";

         cin>>rand2;

         for(i=0;i<DataNum;i++)

         {

              for(j=0;j<Dimension;j++)

                   DataSet[i*Dimension+j]=FRand(rand1,rand2);

         }

 

     }

         else

              if(flag=='H'||flag=='h')

              {

                   for(i=0;i<DataNum;i++)

                   {

                       cout<<endl<<" 请输入第"<<i+1<<" 个样本的"<<Dimension<<" 个分量";

                       for(j=0;j<Dimension;j++)

                            cin>>DataSet[i*Dimension+j];

                   }

              }

              else

                   cout<<endl<<" 非法数据!";

}

 

//****************初始化聚类样本

 

void GETDATA::Initial()

{

     char ch;

     GETDATA::Display();

     cout<<endl<<" 重新录入样本输入A  开始聚类B: ";

     cin>>ch;

     while(!(ch=='A'||ch=='a')&&!(ch=='B'||ch=='b'))

     {

         cout<<endl<<" 重新录入样本输入A  开始聚类B: ";

         cin>>ch;

     }

 

     if(ch=='A'||ch=='a')       

         GETDATA::Input();

}

 

double GETDATA::FRand(double rand1,double rand2)

{

     return rand1+(double)(((double)rand()/(double)RAND_MAX)*(rand2-rand1));

}

 

 

 

 

//***********************************************************

// 类SSA:    K-均值算法的实现                          *** 

//           功能:根据设定的K,DataNum,Dimension等聚类   ***

//***********************************************************

 

class SAA

{

public:

     struct DataType

     {

     double *data;

     int father;

     double *uncle;

     };

 

     struct ClusterType

     {

     double *center;

     int sonnum;

    

     };

 

     SAA();

     void Initialize();

     void KMeans();

     void SA( );

     void DisPlay();

 

 

     void GetDataset(DataType *p1,double *p2,int datanum,int dim);

     void GetValue(double *str1,double *str2,int dim);

     int  FindFather(double *p,int k);

     double SquareDistance(double *str1,double *str2,int dim);

     int  Compare(double *p1,double *p2,int dim);

     void NewCenterPlus(ClusterType *p1,int t,double *p2,int dim);

     void NewCenterReduce(ClusterType *p1,int t,double *p2,int dim);

     double MaxFunc();

     void Generate(DataType *p1,ClusterType *c1);

     double Compare(DataType *p1,ClusterType *c1,DataType *p2,ClusterType *c2);

     void CopyStatus(DataType *p1,ClusterType *c1,DataType *p2,ClusterType *c2);             

     int  SecondFather(DataType *p,int t,int k);

     double AimFunction(DataType *q,ClusterType *c);

     double FRand(double ,double);

     void KMeans1();

 

protected:

 

double Temp;

//double CO;

//double DeclineRate;

//int MarkovLengh;

//int MaxInnerLoop;

//int MaxOuterLoop;

double AimFunc;

 

DataType *DataMember, *KResult,*CurrentStatus,*NewStatus;

ClusterType * ClusterMember,*NewCluster,*CurrentCluster;

      

}; //end of class SAA

 

 

 

//************建立构造函数,初始化保护成员

SAA::SAA()

{   

     int i;

//   DeclineRate=(double)0.9;

//   MarkovLengh=1000;

//   MaxInnerLoop=200;

//   MaxOuterLoop=10;

//   CO=1;

 

    

     DataMember=new DataType[DataNum];

     ClusterMember=new ClusterType[K];

 

     for(i=0;i<DataNum;i++)

     {

         DataMember[i].data=new double[Dimension];

 

         DataMember[i].uncle=new double[K];

     }   

     for(i=0;i<K;i++)

         ClusterMember[i].center=new double[Dimension];

 

     GetDataset(DataMember,DataSet,DataNum,Dimension);

 

             

}//endSAA

 

 

//****************初始化参数,及开始搜索状态

 

void SAA::Initialize( )

{

    

     //K-均值聚类法建立退火聚类的初始状态

//   KMeans();

 

      

}

 

//*******************k-均值法进行聚类

//************接口:数据,数量,维数,类别

//逐点聚类方式

 

void SAA::KMeans()

{

    

     int i,j,M=1;

     int pa,pb,fa;

     ClusterType *OldCluster;   

 

     //初始化聚类中心

 

     OldCluster=new ClusterType[K];

     for(i=0;i<K;i++)

     {

     //   cout<<endl<<i+1<<"中心:";

         GetValue(ClusterMember[i].center,DataMember[i].data,Dimension);

         ClusterMember[i].sonnum=1;

 

         OldCluster[i].center=new double[Dimension];

         GetValue(OldCluster[i].center,ClusterMember[i].center,Dimension);

     }

 

 

     for(i=0;i<DataNum;i++) 

     {

//       cout<<endl<<i+1<<": "<<ClusterMember[0].center[0]<<" "<<ClusterMember[1].center[0]<<" son: "<<ClusterMember[0].sonnum;         

         for(j=0;j<K;j++)

         {

              DataMember[i].uncle[j]=SquareDistance(DataMember[i].data,ClusterMember[j].center,Dimension);

//            cout<<"   "<<i+1<<"->"<<j+1<<": "<<DataMember[i].uncle[j];   //"类中心"<<ClusterMember[j].center[0]<<": "<<DataMember[i].uncle[j]<<"  ";

         }

         pa=DataMember[i].father=FindFather(DataMember[i].uncle,K);

         if(i>=K)

         {

//            cout<<endl<<pa<<" 类样本数:"<<ClusterMember[pa].sonnum;

              ClusterMember[pa].sonnum+=1;

//            cout<<endl<<pa<<" 类样本数:"<<ClusterMember[pa].sonnum;

              NewCenterPlus(ClusterMember,pa,DataMember[i].data,Dimension);

//            cout<<endl<<i+1<<"->"<<pa+1<<"类 :"<<ClusterMember[pa].center[0];

              GetValue(OldCluster[pa].center,ClusterMember[pa].center,Dimension);

         }

     }

 

     //开始聚类,直到聚类中心不再发生变化。××逐个修改法××

     while(!HALT)

     {

         //一次聚类循环:.重新归类;.修改类中心

         for(i=0;i<DataNum;i++) 

         {

//            cout<<endl;

              for(j=0;j<K;j++)

              {

//                 cout<<"  D "<<DataMember[i].data[0]<<"  "<<ClusterMember[j].center[0]<<"  ";

                   DataMember[i].uncle[j]=SquareDistance(DataMember[i].data,ClusterMember[j].center,Dimension);

//              cout<<DataMember[i].data[0]<<"->"<<ClusterMember[0l].center[0]<<" : "<<DataMember[i].uncle[0]<<endl;

//                 cout<<i+1<<"->"<<j+1<<" "<<DataMember[i].uncle[j];

              }

             

              fa=DataMember[i].father;

 

             if(fa!=FindFather(DataMember[i].uncle,K)&&ClusterMember[fa].sonnum>1)

              {

 

                   pa=DataMember[i].father;

                   ClusterMember[pa].sonnum-=1;

 

                   pb=DataMember[i].father=FindFather(DataMember[i].uncle,K);

                   ClusterMember[pb].sonnum+=1;

 

                   NewCenterReduce(ClusterMember,pa,DataMember[i].data,Dimension);

                   NewCenterPlus(ClusterMember,pb,DataMember[i].data,Dimension);

                  

                  

/*                 cout<<endl<<"*********************"<<M<<" 次聚类:*****************";  //聚一次类输出一次结果

                   cout<<endl<<DataMember[i].data[0]<<" in "<<pa+1<<"类-> "<<pb+1<<"类: ";

 

                   for(t=0;t<K;t++)

                   {

                       cout<<endl<<" 第"<<t+1 <<"类中心: "<<ClusterMember[t].center[0]<<"  样本个数:"<<ClusterMember[t].sonnum;

                   }

 

                   DisPlay();

                   M=M+1;

*/

              }                     

 

         }//endfor

             

    

         //判断聚类是否完成,HALT=1,停止聚类

         HALT=0;

         for(j=0;j<K;j++)

              if(Compare(OldCluster[j].center,ClusterMember[j].center,Dimension))

                   break;

         if(j==K)

              HALT=1;

 

             

         for(j=0;j<K;j++)

              GetValue(OldCluster[j].center,ClusterMember[j].center,Dimension);

    

     }//endwhile

 

}//end of KMeans

 

//批聚类方式

 

void SAA::KMeans1()

{

     int i,j,M=1;

     int pa,pb,fa;

     ClusterType *OldCluster;   

 

     //初始化聚类中心

 

     OldCluster=new ClusterType[K];

     for(i=0;i<K;i++)

         OldCluster[i].center=new double[Dimension];

 

         for(j=0;j<K;j++)

              GetValue(OldCluster[j].center,ClusterMember[j].center,Dimension);

 

     //开始聚类,直到聚类中心不再发生变化。××逐个修改法××

     while(!HALT)

     {

         //一次聚类循环:.重新归类;.修改类中心

         for(i=0;i<DataNum;i++) 

         {

              for(j=0;j<K;j++)

                   DataMember[i].uncle[j]=SquareDistance(DataMember[i].data,ClusterMember[j].center,Dimension);

              fa=DataMember[i].father;

 

             if(fa!=FindFather(DataMember[i].uncle,K)&&ClusterMember[fa].sonnum>1)

              {

 

                   pa=DataMember[i].father;

                   ClusterMember[pa].sonnum-=1;

 

                   pb=DataMember[i].father=FindFather(DataMember[i].uncle,K);

                   ClusterMember[pb].sonnum+=1;

 

                   NewCenterReduce(ClusterMember,pa,DataMember[i].data,Dimension);

                   NewCenterPlus(ClusterMember,pb,DataMember[i].data,Dimension);

              }                     

 

         }//endfor

             

    

         //判断聚类是否完成,HALT=1,停止聚类

         HALT=0;

         for(j=0;j<K;j++)

              if(Compare(OldCluster[j].center,ClusterMember[j].center,Dimension))

                   break;

         if(j==K)

              HALT=1;

 

             

         for(j=0;j<K;j++)

              GetValue(OldCluster[j].center,ClusterMember[j].center,Dimension);

    

     }//endwhile

 

}

 

//几个经常需要调用的小函数

 

void SAA::NewCenterPlus(ClusterType *p1,int t,double *p2,int dim)

{

     int i;

     for(i=0;i<dim;i++)

         p1[t].center[i]=p1[t].center[i]+(p2[i]-p1[t].center[i])/(p1[t].sonnum);

}

 

 

void SAA::NewCenterReduce(ClusterType *p1,int t,double *p2,int dim)

{

     int i;

     for(i=0;i<dim;i++)

         p1[t].center[i]=p1[t].center[i]+(p1[t].center[i]-p2[i])/(p1[t].sonnum);

}

 

 

void SAA::GetDataset(DataType *p1,double *p2,int datanum,int dim)

{

     int i,j;

     for(i=0;i<datanum;i++)

     {

        

         for(j=0;j<dim;j++)

              p1[i].data[j]=p2[i*dim+j];

     }

}

 

void SAA::GetValue(double *str1,double *str2,int dim)

{

     int i;

     for(i=0;i<dim;i++)    

         str1[i]=str2[i];

}

 

int  SAA::FindFather(double *p,int k)

{

     int i,N=0;

     double min=30000;

 

     for(i=0;i<k;i++)  

         if(p[i]<min)

         {

              min=p[i];

              N=i;

         }

     return N;

}

 

double SAA::SquareDistance(double *str1,double *str2,int dim)

{

     double dis=0;

     int i;

     for(i=0;i<dim;i++)

         dis=dis+(double)(str1[i]-str2[i])*(str1[i]-str2[i]);

     return dis;

}

 

int  SAA::Compare(double *p1,double *p2,int dim)

{

     int i;

     for(i=0;i<dim;i++)

         if(p1[i]!=p2[i])

              return 1;

     return 0;

}   

 

 

double SAA::FRand(double a,double b)

{

     return a+(double)(((double)rand()/(double)RAND_MAX)*(b-a));

 

}

 

 

void SAA::DisPlay()

{

     int i,N,j,t;

     ofstream  result("聚类过程结果显示.txt",ios::ate);

     for(i=0;i<K;i++)

     {

         N=0;

         cout<<endl<<endl<<"******************** 第"<<i+1<<" 类样本:*******************"<<endl;

         result<<endl<<endl<<"******************** 第"<<i+1<<" 类样本:*******************"<<endl;

         for(j=0;j<DataNum;j++)

              if(DataMember[j].father==i)

              {

                   cout<<" [";

                   for(t=0;t<Dimension;t++)

                   cout<<" "<<setw(5)<<DataMember[j].data[t];

                   cout<<" ]  ";              

                   if((N+1)%Row==0)

                       cout<<endl;

 

                   result<<" [";

                   for(t=0;t<Dimension;t++)

                   result<<" "<<setw(5)<<DataMember[j].data[t];

                   result<<" ]  ";                 

                   if((N+1)%Row==0)

                       result<<endl;

 

                   N=N+1;

              }

     }//end for

 

     cout<<endl<<endl<<"  聚类结果,总体误差准则函数:"<<AimFunction(DataMember,ClusterMember)<<endl;

     result<<endl<<"  聚类结果,总体误差准则函数:"<<AimFunction(DataMember,ClusterMember)<<endl;

 

     result.close();

 

}//end of Display

 

double SAA::AimFunction(DataType *q,ClusterType *c)

{

     int i,j;

     double *p;

     p=new double[K];

     for(i=0;i<K;i++)

         p[i]=0;

     for(i=0;i<K;i++)

     {

         for(j=0;j<DataNum;j++)

              if(q[j].father==i)

              {

                   p[i]=p[i]+SquareDistance(c[i].center,q[j].data,Dimension);

              }

     }

 

             

     AimFunc=0;

     for(i=0;i<K;i++)

         AimFunc=AimFunc+p[i];

     return AimFunc;

 

}

 

 

 

//************************************

//            主函数入口         ****  

//************************************

 

 

void main()

{

     //用户输入数据

     srand((unsigned)time(NULL));

     GETDATA getdata;

     getdata.Initial();

     ofstream file("聚类过程结果显示.txt",ios::trunc);   //聚类结果存入“聚类结果显示.txt”文件中

 

     //k-均值聚类方法聚类

     SAA saa;    //****此行不可与上行互换。

    

     saa.KMeans();    //逐个样本聚类

//   saa.KMeans1();   //批处理方式聚类,可以比较saa.KMeans()的区别

     cout<<endl<<"***********************K-均值聚类结果:**********************";

     file<<endl<<"***********************K-均值聚类结果:**********************"<<endl;

 

     file.close();

     saa.DisPlay();

 

     cout<<endl<<"  程序运行结束!"<<endl;

              }

}3)输出运算结果

 

 

 

实习三   关联规则挖掘及其应用

实习题:Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。它将关联规则挖掘算法的设计分解为两个子问题:(1) 找到所有支持度大于最小支持度的项集,这些项集称被为频繁项集(Frequent Itemset)。(2) 使用第一步产生的频繁集产生期望的规则。

在图书馆管理系统中积累了大量的读者借还书的历史记录,基于Apriori算法挖掘最大频繁项目集,由此产生关联规则。数据格式可参阅文献

参考文献:彭仪普,熊拥军: 关联挖掘在文献借阅历史数据分析中的应用.情报杂志. 2005年第8期

1)    算法基本思想的描述

首先产生频繁1-项集L1,然后是频繁2-项集L2,直到有某个r值使得Lr为空,这时算法停止。这里在第k次循环中,过程先产生候选k-项集的集合Ck,Ck中的每一个项集是对两个只有一个项不同的属于Lk-1的频集做一个(k-2)-连接来 产生的。Ck中的项集是用来产生频集的候选集,最后的频集Lk必须是Ck的一个子集。Ck中的每个元素需在交易数据库中进行验证来决定其是否加入Lk,这 里的验证过程是算法性能的一个瓶颈。

为了生成所有频集,使用了递推的方法。其核心思想简要描述如下:

(1)     L1 = {large 1-itemsets};

(2)     for (k=2; Lk-1&sup1;F; k++) do begin

(3)         Ck=apriori-gen(Lk-1);   //新的候选集

(4)         for all transactions t&Icirc;D do begin

(5)                  Ct=subset(Ck,t);    //事务t中包含的候选集

(6)           for all candidates c&Icirc; Ct  do

(7)           c.count++;

(8)         end

(9)        Lk={c&Icirc; Ck |c.count&sup3;minsup}

(10)    end

(11)                   Answer=∪kLk;

1.Find all frequent itemsets: By definition, each of these itemsets will occur at least as  frequently as a predetermined minimum support count, min sup

2. Generate strong association rules from the frequent itemsets: By definition, these  rules must satisfy minimum support and minimum confidence

3.Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!

Method:

     – generate length (k+1) candidate itemsets from two length k frequent  itemsets which have K-1 kinds same itemsets, and

–  test the candidates against DB

 

 

 

 

 

 

 

 

2)    编程实现算法

 

1.   Item.h 源文件

/*----------------------------------------------------------------------

  File     : Item.h

  Contents : itemset management

  Author   : Bart Goethals

  Update   : 4/4/2003

----------------------------------------------------------------------*/

 

#include <set>

using namespace std;

 

class Item

{

public:

 

     Item(int i) : id(i), support(0), children(0) {}

     Item(const Item &i) : id(i.id), support(i.support), children(i.children) {}

     ~Item(){}

 

     int getId() const {return id;}

 

     int Increment(int inc = 1) const {return support+=inc;}

 

     set<Item> *makeChildren() const;

     int deleteChildren() const;

 

     int getSupport() const {return support;}

     set<Item> *getChildren() const {return children;}

 

     bool operator<(const Item &i) const{return id < i.id;}

 

private:

 

     const int id;

 

     mutable int support;

     mutable set<Item> *children;

};

 

 

 

2. AprioriRules.h 源文件

 

class Itemset

{

 public:

  Itemset(int l) : length(l) {t = new int[l];}

  Itemset(const Itemset &is) : length(is.length), support(is.support)

    {

      t = new int[length];

      for(int i=0;i<length;i++) t[i] = is.t[i];

    }

 

  ~Itemset(){delete [] t;}

    

  int length;

  int *t;

  int support;

};

 

class AprioriRules

{

 public:

 

  AprioriRules();

  ~AprioriRules();

 

  void setData(char *fn);

  int setOutputRules(char *fn);

  void setMinConf(float mc){minconf=mc;}

  int generateRules();

  void setMaxHead(int m){maxhead=m;}

  void setVerbose(){verbose=true;}

    

 private:    

 

  Itemset *getNextSet();

  int generateRules(set<Item> *current, int *iset, int depth);

  int processSet(set<Item> *items, int sl, int *iset, int sup, int *head, int spos, int depth);

 

  Item *trie;

  float minconf;

  int maxhead;

  ofstream rulesout;

  FILE *data;

  bool verbose;

};

3.AprioriRules.cpp源文件

/*----------------------------------------------------------------------

  File     : AprioriRules.cpp

  Contents : apriori algorithm for finding association rules

  Author   : Bart Goethals

  Update   : 16/04/2003

----------------------------------------------------------------------*/

 

#include <iostream>

#include <fstream>

#include <stdio.h>

#include <set>

#include <vector>

#include <time.h>

using namespace std;

#include "Item.h"

#include "AprioriRules.h"

 

AprioriRules::AprioriRules()

{

  data=0;

  minconf=0;

  maxhead=0;

  trie = new Item(0);

  verbose = false;

}

 

AprioriRules::~AprioriRules()

{

  if(data) fclose(data);

  if(trie) {

    trie->deleteChildren();

    delete trie;

  }

}

 

void AprioriRules::setData(char *fn)

{

  data = fopen(fn,"rt");

}

 

int AprioriRules::setOutputRules(char *fn)

{

  rulesout.open(fn);

  if(!rulesout.is_open()) {

    cerr << "error: could not open " << fn << endl;

    return -1;

  }

  return 0;

}

 

Itemset *AprioriRules::getNextSet()

{

  Itemset *t;

  vector<int> list;

  char c;

 

  do {

    int item=0, pos=0;

    c = getc(data);

    while((c >= '0') && (c <= '9')) {

      item *=10;

      item += int(c)-int('0');

      c = getc(data);

      pos++;

    }

    if(pos) list.push_back(item);

  }while(c != '\n' && !feof(data));

 

  if(feof(data)) return 0;

 

  int size = list.size() - 1;

  if(size>=0) {

    t = new Itemset(size);

    t->support = list[size];

    for(int i=0; i<size; i++) t->t[i] = list[i];

    return t;

  }

  else return getNextSet();

}

 

int AprioriRules::generateRules()

{

  int size=0;

  clock_t start;

    

  // Read all frequent itemsets

  if(verbose) cout << "reading frequent itemsets" << flush;

  start = clock();

  while(Itemset *t = getNextSet()) {

    set<Item>::iterator it;

    set<Item>* items = trie->makeChildren();

        

    for(int depth=0;depth < t->length; depth++) {

      it = items->find(Item(t->t[depth]));

      if(it == items->end()) it = items->insert(Item(t->t[depth])).first;

      items = it->makeChildren();

    }

    if(t->length) it->Increment(t->support);

    else trie->Increment(t->support);

        

    size = (t->length>size? t->length : size);

    delete t;

  }

  if(verbose) cout << "[" << (clock()-start)/double(CLOCKS_PER_SEC) << "s]" << endl << flush;

    

  // generate rules

  if(verbose) cout << "generating rules" << flush;

  int *iset = new int[size];

  int added = generateRules(trie->getChildren(), iset, 1);

  delete [] iset;

  if(verbose) cout << "[" << (clock()-start)/double(CLOCKS_PER_SEC) << "s]" << endl << flush;

 

  return added;

}

 

int AprioriRules::generateRules(set<Item> *current, int *iset, int depth)

{

  if(current==0) return 0;

  int added = 0;

    

  for(set<Item>::iterator runner = current->begin(); runner!= current->end(); runner++) {

        

    iset[depth-1] = runner->getId();

    if(depth > 1) {

      int *tmp = new int[depth];

      added += processSet(trie->getChildren(), depth, iset, runner->getSupport(), tmp, 0,1);

      delete [] tmp;

    }

        

    added += generateRules(runner->getChildren(), iset, depth+1);

  }

    

  return added;

}

 

int AprioriRules::processSet(set<Item> *items, int sl, int *iset, int sup, int *head, int spos, int depth)

{

  int loper = spos;

  set<Item>::iterator runner, it;

  int added=0,i,j,k;

    

  spos = sl;

  while(--spos >= loper) {

    head[depth-1] = iset[spos];

    runner = items->find(Item(iset[spos]));

 

    // find body and its support

    set<Item> *tmp = trie->getChildren();

    int *body = new int[sl-depth];

    for(i=j=k=0; i<sl; i++) {

      if(j<depth && iset[i]==head[j]) j++;

      else {

     it = tmp->find(Item(iset[i]));

     tmp = it->getChildren();

     body[k++] = iset[i];

      }

    }

//    float intr = (float(sup)*float(trie->getSupport()))/(float(runner->getSupport())*float(it->getSupport()));

    float conf = float(sup)/float(it->getSupport());

        

    if(conf>=minconf) {

      for(i=0; i<sl-depth; i++) rulesout << body[i] << " ";

      rulesout << "=> ";

      for(i=0; i<depth; i++) rulesout << head[i] << " ";

      rulesout << "(" << sup << ", " << conf << ")" << endl;

//      rulesout << "(" << sup << ", " << conf << ", " << intr << ")" << endl;

      added++;

    }

    delete [] body;

 

    if(conf>=minconf && depth<sl-1) {

      if(maxhead) {

     if(depth<maxhead) added += processSet(runner->getChildren(), sl, iset, sup, head, spos+1, depth+1);

      }

      else added += processSet(runner->getChildren(), sl, iset, sup, head, spos+1, depth+1);

    }

  }

    

  return added;

}

 

4.Item.cpp

/*----------------------------------------------------------------------

  File     : Item.cpp

  Contents : itemset management

  Author   : Bart Goethals

  Update   : 4/4/2003

----------------------------------------------------------------------*/

 

#include "Item.h"

 

set<Item> *Item::makeChildren() const

{

     if(children) return children;

     return children = new set<Item>;

}

 

int Item::deleteChildren() const

{

     int deleted=0;

 

     if(children)

     {

         for(set<Item>::iterator it = children->begin(); it != children->end(); it++)

         {

              deleted += it->deleteChildren();

         }

         delete children;

         children = 0;

         deleted++;

     }

 

     return deleted;

}

5/*----------------------------------------------------------------------

  File     : aprioritest.cpp

  Contents : apriori algorithm for finding association rules

  Author   : Bart Goethals

  Update   : 16/04/2003

----------------------------------------------------------------------*/

 

#include <stdio.h>

#include <time.h>

#include <iostream>

#include <set>

#include <vector>

#include <fstream>

using namespace std;

#include "Item.h"

#include "AprioriRules.h"

 

int main(int argc, char *argv[])

{

  cout << "Apriori association rule mining implementation" << endl;

  cout << "by Bart Goethals, 2000-2003" << endl;

  cout << "http://www.cs.helsinki.fi/u/goethals/" << endl << endl;

 

  if(argc < 3) {

    cerr << "usage: " << argv[0] << " setsfile minconf [output]" << endl;

  }

  else {

    clock_t start = clock();

    AprioriRules r;

    r.setVerbose();

    r.setData(argv[1]);

    r.setMinConf(atof(argv[2]));

//    r.setMaxHead(1);

    if(argc==4) r.setOutputRules(argv[3]);

 

    start = clock();

    cout << "generating rules\n" << flush;

    int rules = r.generateRules();

    cout << rules << "\t[" << (clock()-start)/double(CLOCKS_PER_SEC) << "s]" << endl;

    if(argc==4) cout << "Written to " << argv[3] << endl;

  }

 

  return 0;

}

3)输出运算结果

由于数据方面以及程序的一些问题,本实验的测试结果没能产生。

 

 

数据挖掘课程总结:

    1. 在这门比较新的课程中学到了许多的新概念.
    2. 学会了查找相关资料,自学能力进一步加强.
    3. 认识到了自身应用方面的缺陷,在以后的学习中抓紧时间改进.
    4. 在查阅资料的过程中学到了很多新的算法
    5. 进一步加强了编程方面的能力,掌握数据挖掘在现实世界中的应用的以及其重要作用
posted on 2013-09-18 14:35  风生水起  阅读(2225)  评论(0编辑  收藏  举报