随笔 - 1013,  文章 - 5,  评论 - 493,  阅读 - 656万

来源链接:https://mp.weixin.qq.com/s?__biz=MzAxOTU5NTU4MQ==&mid=2247488715&idx=1&sn=2acedd3705b27e5b9e259485f2dd9653&chksm=9bc5fc99acb2758f82b638d03ace8993b5b7374c0162020032e61e144ed86dc5a72082078a91&scene=178&cur_album_id=1783545951672958984#rd

来源公众号:ChallengeHub  

1什么是warmup

warmup是针对学习率learning rate优化的一种策略,主要过程是,在预热期间,学习率从0线性(也可非线性)增加到优化器中的初始预设lr,之后使其学习率从优化器中的初始lr线性降低到0。如下图所示:

 

 

 2 Warmup的作用

由于刚开始训练时,模型的权重(weights)是随机初始化的,此时若选择一个较大的学习率,可能带来模型的不稳定(振荡),选择Warmup预热学习率的方式,可以使得开始训练的几个epoch或者一些step内学习率较小,在预热的小学习率下,模型可以慢慢趋于稳定,等模型相对稳定后再选择预先设置的学习率进行训练,使得模型收敛速度变得更快,模型效果更佳。

3 为什么warmup有效

这个问题目前还没有被充分证明,下面是来自知乎的回答解释:

https://www.zhihu.com/question/338066667 从理论层面上可以解释为:

  • 有助于减缓模型在初始阶段对mini-batch的提前过拟合现象,保持分布的平稳
  • 有助于保持模型深层的稳定性

从训练效果可以体现为:

  • 一开始神经网络输出比较random,loss比较大,容易不收敛,因此用小点的学习率, 学一丢丢,慢慢涨上去。
  • 梯度偏离真正较优的方向可能性比较大,那就走短一点错了还可以掰回来。

4 如何使用

  • 实例1:warm_up_ratio 设置预热步数
from transformers import AdamW, get_linear_schedule_with_warmup

optimizer = AdamW(model.parameters(), lr=lr, eps=adam_epsilon)
len_dataset = 3821 # 可以根据pytorch中的len(Dataset)计算
epoch = 30
batch_size = 32
total_steps = (len_dataset // batch_size) * epoch if len_dataset % batch_size = 0 else (len_dataset // batch_size + 1) * epoch # 每一个epoch中有多少个step可以根据len(DataLoader)计算:total_steps = len(DataLoader) * epoch

warm_up_ratio = 0.1 # 定义要预热的step
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = warm_up_ratio * total_steps, num_training_steps = total_steps)
......
optimizer.step()
scheduler.step()
optimizer.zero_grad()

  • 实例2:num_warmup_steps 设置预热步数
# training steps 的数量: [number of batches] x [number of epochs].
total_steps = len(train_dataloader) * epochs
 
# 设计 learning rate scheduler
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = 50, 
                                            num_training_steps = total_steps)

5 经验参数选择
一般可取训练steps的10%,参考BERT。这里可以根据具体任务进行调整,主要需要通过warmup来使得学习率可以适应不同的训练集
合,另外我们也可以通过训练误差观察loss抖动的关键位置,找出合适的学习率

6 其他策略
posted on   风生水起  阅读(340)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
历史上的今天:
2012-07-26 数据仓库开发之路zz
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

点击右上角即可分享
微信分享提示