特殊计数序列——Catalan数

Catalan数

前10项

\(1,1,2,5,14,42,132,429,1430,4862\)

(注:从第\(0\)项起)

计算式

  • \(C_n=\frac{1}{n+1}\dbinom{2n}{n}\)
  • \(C_{n+1}=\sum_{i=0}^nC_iC_{n-i}\)
  • \(C_n=\dbinom{2n}{n}-\dbinom{2n}{n-1}\)
  • \(C_n=\frac{4n-2}{n+1}C_{n-1}\)

组合意义

1、由\(n\)\(+1\)\(n\)\(-1\)构成的\(2n\)项序列中,满足\(\forall k\in[1,2n],\sum_{i=1}^ka_i\geq 0\)的序列数量

大家都知道结论:\(C_n=\frac{1}{n+1}\dbinom{2n}{n}\),在这里给出证明

考虑从相反的方面进行考虑,即用总序列数\(\dbinom{2n}{n}\)减去不合法的序列数

对于每一个不合法的序列,必定存在一个最小的\(k\)使得\(\sum_{i=1}^k a_i<0\),也就是有\(\sum_{i=0}^{k-1}a_i=0\)\(a_k=-1\)

很明显\(k\)是奇数

考虑将前\(k\)项取相反数,那么该序列变成了一个含有\(n+1\)\(+1\)\(n-1\)\(-1\)的序列,容易知道一个不合法的原序列只会对应一个新序列

同理,在新序列中一定会存在一个\(k\)使得\(\sum_{i=0}^ka_i=1\),此时再一次取前\(k\)项的相反数,又会得到一个不合法的原序列

因此不合法的序列和新序列是一一映射的关系,而新序列的总数也就是\(\dbinom{2n}{n-1}\)

于是最终答案就是\(\dbinom{2n}{n}-\dbinom{2n}{n-1}=\frac{1}{n+1}\dbinom{2n}{n}\)

由这一条组合意义可以引申出许多本质一样的组合意义

  • 在网格图上从\((0,0)\)走到\((n,n)\),每次只走一个单位长度,不走回头路,且不穿过(可碰到)直线\(y=x\)的方案数。(向右:\(+1\),向上:\(-1\)
  • \(2n\)个人排队买票,票价5角,有\(n\)个人持有1元硬币,另\(n\)个人持有\(5\)角硬币,求不使用额外的\(5\)角钱的排队方案(\(5\)角:\(+1\)\(1\)元:\(-1\)

2、凸\(n+1\)边形被其内部不相交的对角线划分成三角形区域的方案数

这是上面的第二个式子\(C_{n+1}=\sum_{i=0}^nC_iC_{n-i}\),我们有\(f_n=\sum_{i=2}^{n-1}f_if_{n-i-1}\),故\(f_n=C_{n+2}\)

类似的还有

  • \(n\)个节点的不同的二叉树,考虑在中序遍历中根节点的位置即可

3、其它

如:[HNOI2009]有趣的数列

本质上和第一点是相同的,关键是对偶数位置的转化

posted @ 2019-04-27 20:29  EncodeTalker  阅读(257)  评论(0编辑  收藏  举报