【LeetCode题解】动态规划:从新手到专家(一)
文章标题借用了Hawstein的译文《动态规划:从新手到专家》。
1. 概述
动态规划( Dynamic Programming, DP)是最优化问题的一种解决方法,本质上状态空间的状态转移。所谓状态转移是指每个阶段的最优状态(对应于子问题的解)可以从之前的某一个或几个阶段的状态中得到,这个性质叫做最优子结构。而不管之前这个状态是如何得到的,这被称之为无后效性。
DP问题中最经典的莫过于01背包问题:
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值;则其状态转移方程:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
2. 题解
LeetCode题目 | 归类 |
---|---|
53. Maximum Subarray | 子数组最大和 |
121. Best Time to Buy and Sell Stock | 子数组最大和 |
122. Best Time to Buy and Sell Stock II | 子序列最大和 |
123. Best Time to Buy and Sell Stock III | |
188. Best Time to Buy and Sell Stock IV | |
55. Jump Game | |
70. Climbing Stairs | |
62. Unique Paths | |
63. Unique Paths II | |
64. Minimum Path Sum | 最短路径 |
91. Decode Ways |
以下代码既有Java,也有Go。
53. Maximum Subarray
子数组最大和问题,求解方法可用Kadane算法。
121. Best Time to Buy and Sell Stock
题目大意:给定数组\(a[..]\),求解\(\max a[j] - a[i] \quad j > i\)。
解决思路:将数组a的相邻值相减(右边减左边)变换成数组b,上述问题转变成了求数组b的子数组最大和问题.
// Kadane algorithm to solve Maximum subArray problem
public int maxProfit(int[] prices) {
int maxEndingHere = 0, maxSoFar = 0;
for (int i = 1; i < prices.length; i++) {
maxEndingHere += prices[i] - prices[i - 1];
maxEndingHere = Math.max(maxEndingHere, 0);
maxSoFar = Math.max(maxEndingHere, maxSoFar);
}
return maxSoFar;
}
122. Best Time to Buy and Sell Stock II
之前问题Best Time to Buy and Sell Stock的升级版,对交易次数没有限制,相当于求解相邻相减后形成的子序列最大和——只要为正数,则应计算在子序列内。
public int maxProfit(int[] prices) {
int max = 0;
for (int i = 1; i < prices.length; i++) {
if (prices[i] > prices[i - 1]) {
max += (prices[i] - prices[i - 1]);
}
}
return max;
}
123. Best Time to Buy and Sell Stock III
最多允许交易两次。
public int maxProfit(int[] prices) {
int sell1 = 0, sell2 = 0;
int buy1 = Integer.MIN_VALUE, buy2 = Integer.MIN_VALUE;
for (int price : prices) {
buy1 = Math.max(buy1, -price); // borrow
sell1 = Math.max(sell1, buy1 + price);
buy2 = Math.max(buy2, sell1 - price);
sell2 = Math.max(sell2, buy2 + price);
}
return sell2;
}
188. Best Time to Buy and Sell Stock IV
最多允许交易k次。当k >= n/2时,在任意时刻都可以进行交易(一次交易包括买、卖),因此该问题退化为了问题122. Best Time to Buy and Sell Stock II。其他情况则有递推式:
其中,\(c_{i,j}\)表示在\(t\)时刻共\(i\)次交易产生的最大收益。
public int maxProfit(int k, int[] prices) {
int n = prices.length;
if (n <= 1) {
return 0;
}
// make transaction at any time
else if (k >= n / 2) {
return maxProfit122(prices);
}
int[][] c = new int[k + 1][n];
for (int i = 1; i <= k; i++) {
int localMax = -prices[0];
for (int j = 1; j < n; j++) {
c[i][j] = Math.max(c[i][j - 1], localMax + prices[j]);
localMax = Math.max(localMax, c[i - 1][j] - prices[j]);
}
}
return c[k][n - 1];
}
public int maxProfit122(int[] prices) {
int max = 0;
for (int i = 1; i < prices.length; i++) {
if (prices[i] > prices[i - 1]) {
max += (prices[i] - prices[i - 1]);
}
}
return max;
}
55. Jump Game
限制当前最大跳跃数,问是否能到达最后一个index。需要反向往后推演。
public boolean canJump(int[] nums) {
int n = nums.length, index = n - 1;
for (int i = n - 2; i >= 0; i--) {
if (i + nums[i] >= index)
index = i;
}
return index <= 0;
}
70. Climbing Stairs
题目大意:每一次可以加1或加2,那么从0加到n共有几种加法?
假定\(d_i\)表示加到i的种数,那么就有递推式\(d_i = d_{i-1} + d_{i-2}\)。
func climbStairs(n int) int {
if(n < 1) {
return 0;
}
d := make([]int, n+1)
d[1] = 1
if n >= 2 {
d[2] = 2
}
for i := 3; i<=n; i++ {
d[i] = d[i-1] + d[i-2]
}
return d[n]
}
62. Unique Paths
题目大意:求解从左上角到右下角的路径数。
路径数递推式:\(c_{i,j}= c_{i-1,j} + c_{i,j-1}\)。
func uniquePaths(m int, n int) int {
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
}
// handle boundary condition: f[][0] and f[0][]
f[0][0] = 1
for i := 1; i < m; i++ {
f[i][0] = 1
}
for j := 1; j < n; j++ {
f[0][j] = 1
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
f[i][j] = f[i][j - 1] + f[i - 1][j]
}
}
return f[m-1][n-1]
}
63. Unique Paths II
加了限制条件,有的点为obstacle——不允许通过。上面的递推式依然成立,只不过要加判断条件。另外,在实现过程中可以用一维数组代替二维数组,比如说按行或按列计算。
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int columnSize = obstacleGrid[0].length;
int[] c = new int[columnSize];
c[0] = 1;
for (int[] row : obstacleGrid) {
for (int j = 0; j < columnSize; j++) {
if (row[j] == 1)
c[j] = 0;
else if (j >= 1)
c[j] += c[j - 1];
}
}
return c[columnSize - 1];
}
64. Minimum Path Sum
题目大意:从矩阵的左上角到右下角的最短路径。
加权路径值\(c_{i,j}= \max (c_{i-1,j},c_{i,j-1}) + w_{i,j}\),其中,\(w_{i,j}\)为图中边的权值。
// the shortest path for complete directed graph
func minPathSum(grid [][]int) int {
var m, n = len(grid), len(grid[0])
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
}
// handle boundary condition: f[][0] and f[0][]
f[0][0] = grid[0][0]
for i := 1; i < m; i++ {
f[i][0] = f[i - 1][0] + grid[i][0]
}
for j := 1; j < n; j++ {
f[0][j] = f[0][j-1] + grid[0][j]
}
for i :=1; i < m; i++ {
for j := 1; j<n; j++ {
if(f[i-1][j] < f[i][j-1]) {
f[i][j] = f[i-1][j] + grid[i][j]
} else {
f[i][j] = f[i][j-1] + grid[i][j]
}
}
}
return f[m-1][n-1]
}
91. Decode Ways
求解共有多少种解码情况。
public int numDecodings(String s) {
int n = s.length();
if (n == 0 || (n == 1 && s.charAt(0) == '0'))
return 0;
int[] d = new int[n+1];
d[n] = 1;
d[n - 1] = s.charAt(n - 1) == '0' ? 0 : 1;
for (int i = n-2; i >= 0; i--) {
if(s.charAt(i) == '0')
continue;
else if(Integer.parseInt(s.substring(i, i+2)) <= 26)
d[i] += d[i + 2];
d[i] += d[i + 1];
}
return d[0];
}