neuroph Perceptron Sample
错误:
Exception in thread "main" java.lang.NoClassDefFoundError: org/slf4j/LoggerFactory
at org.neuroph.core.NeuralNetwork.<init>(NeuralNetwork.java:106)
at org.neuroph.nnet.Perceptron.<init>(Perceptron.java:56)
at PerceptronSample.main(PerceptronSample.java:24)
Caused by: java.lang.ClassNotFoundException: org.slf4j.LoggerFactory
at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
... 3 more
解决方法:
https://www.slf4j.org/download.html
下载 slf4j-1.7.24.zip 并且解压;
引用以下jar:
slf4j-api-1.7.24.jar
slf4j-log4j12-1.7.24.jar
=========================
错误:
Caused by: java.lang.ClassNotFoundException: org.apache.log4j.Level
at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:308)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
解决方法:
http://logging.apache.org/log4j/1.2/download.html
http://www.apache.org/dyn/closer.cgi/logging/log4j/1.2.17/log4j-1.2.17.zip
下载 log4j-1.2.17.zip
解压
引用 log4j-1.2.17.jar
===========================
跑 neuroph 需要引用 neuroph-core-2.93.jar ,并且引用以上的几个jar。
// require java 1.8 // jar: D:\Neuroph\neuroph-2.93b\neuroph-2.93b\neuroph-core-2.93.jar // java.lang.ClassNotFoundException: org.slf4j.LoggerFactory // 这种情况,一般是在lib包下缺少两个jar文件,这两个jar文件是:slf4j-api-1.5.0和slf4j-log4j12-1.5.0,他们的位置在: // spring-framework-2.5.6\lib\slf4j文件夹下。 // https://www.slf4j.org/ import java.util.Arrays; import org.neuroph.core.NeuralNetwork; import org.neuroph.nnet.Perceptron; import org.neuroph.core.data.DataSet; import org.neuroph.core.data.DataSetRow; /** * This sample shows how to create, train, save and load simple Perceptron neural network */ public class PerceptronSample { public static void main(String args[]) { // create training set (logical AND function) DataSet trainingSet = new DataSet(2, 1); trainingSet.addRow(new DataSetRow(new double[]{0, 0}, new double[]{0})); trainingSet.addRow(new DataSetRow(new double[]{0, 1}, new double[]{0})); trainingSet.addRow(new DataSetRow(new double[]{1, 0}, new double[]{0})); trainingSet.addRow(new DataSetRow(new double[]{1, 1}, new double[]{1})); // create perceptron neural network NeuralNetwork myPerceptron = new Perceptron(2, 1); // learn the training set myPerceptron.learn(trainingSet); // test perceptron System.out.println("Testing trained perceptron"); testNeuralNetwork(myPerceptron, trainingSet); // save trained perceptron myPerceptron.save("mySamplePerceptron.nnet"); // load saved neural network NeuralNetwork loadedPerceptron = NeuralNetwork.createFromFile("mySamplePerceptron.nnet"); // test loaded neural network System.out.println("Testing loaded perceptron"); testNeuralNetwork(loadedPerceptron, trainingSet); } public static void testNeuralNetwork(NeuralNetwork nnet, DataSet tset) { for(DataSetRow dataRow : tset.getRows()) { nnet.setInput(dataRow.getInput()); nnet.calculate(); double[ ] networkOutput = nnet.getOutput(); System.out.print("Input: " + Arrays.toString(dataRow.getInput()) ); System.out.println(" Output: " + Arrays.toString(networkOutput) ); } } }