受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)代码4
### https://www.cnblogs.com/zyly/p/9055616.html ### MINST数据 http://yann.lecun.com/exdb/mnist/ #### ### MINST数据 https://pan.baidu.com/s/1uraPqWIKchHdYn-RRy8dqA 提取码:xgpy # -*- coding: utf-8 -*- """ Created on Sat May 19 09:30:02 2018 @author: zy """ ''' 受限的玻尔兹曼机:https://blog.csdn.net/zc02051126/article/details/9668439 ''' import matplotlib.pylab as plt import numpy as np import random class RBM(object): ''' 定义一个RBM网络类 ''' def __init__(self, n_visible, n_hidden, momentum=0.5, learning_rate=0.1, max_epoch=50, batch_size=128, penalty=0, weight=None, v_bias=None, h_bias=None): ''' RBM网络初始化 使用动量的随机梯度下降法训练网络 args: n_visible:可见层节点个数 n_hidden:隐藏层节点个数 momentum:动量参数 一般取值0.5,0.9,0.99 当取值0.9时,对应着最大速度1/(1-0.9)倍于梯度下降算法 learning_rate:学习率 max_epoch:最大训练轮数 batch_size:小批量大小 penalty:规范化 权重衰减系数 一般设置为1e-4 默认不使用 weight:权重初始化参数,默认是n_hidden x n_visible v_bias:可见层偏置初始化 默认是 [n_visible] h_bias:隐藏层偏置初始化 默认是 [n_hidden] ''' # 私有变量初始化 self.n_visible = n_visible self.n_hidden = n_hidden self.max_epoch = max_epoch self.batch_size = batch_size self.penalty = penalty self.learning_rate = learning_rate self.momentum = momentum if weight is None: self.weight = np.random.random((self.n_hidden, self.n_visible)) * 0.1 # 用于生成一个0到0.1的随机符点数 else: self.weight = weight if v_bias is None: self.v_bias = np.zeros(self.n_visible) # 可见层偏置 else: self.v_bias = v_bias if h_bias is None: self.h_bias = np.zeros(self.n_hidden) # 隐藏层偏置 else: self.h_bias = h_bias def sigmoid(self, z): ''' 定义s型函数 args: z:传入元素or list 、nparray ''' return 1.0 / (1.0 + np.exp(-z)) def forword(self, inpt): ''' 正向传播 args: inpt : 输入数据(可见层) 大小为batch_size x n_visible ''' z = np.dot(inpt, self.weight.T) + self.h_bias # 计算加权和 return self.sigmoid(z) def backward(self, inpt): ''' 反向重构 args: inpt : 输入数据(隐藏层) 大小为batch_size x n_hidden ''' z = np.dot(inpt, self.weight) + self.v_bias # 计算加权个 return self.sigmoid(z) def batch(self): ''' 把数据集打乱,按照batch_size分组 ''' # 获取样本个数和特征个数 m, n = self.input_x.shape # 生成打乱的随机数 per = list(range(m)) random.shuffle(per) per = [per[k:k + self.batch_size] for k in range(0, m, self.batch_size)] batch_data = [] for group in per: batch_data.append(self.input_x[group]) return batch_data def fit(self, input_x): ''' 开始训练网络 args: input_x:输入数据集 ''' self.input_x = input_x Winc = np.zeros_like(self.weight) binc = np.zeros_like(self.v_bias) cinc = np.zeros_like(self.h_bias) # 开始每一轮训练 for epoch in range(self.max_epoch): batch_data = self.batch() num_batchs = len(batch_data) # 存放平均误差 err_sum = 0.0 # 随着迭代次数增加 penalty减小 self.penalty = (1 - 0.9 * epoch / self.max_epoch) * self.penalty # 训练每一批次数据集 for v0 in batch_data: ''' RBM网络计算过程 ''' # 前向传播 计算h0 h0 = self.forword(v0) h0_states = np.zeros_like(h0) # 从 0, 1 均匀分布中抽取的随机值,尽然进行比较判断是开启一个隐藏节点,还是关闭一个隐藏节点 h0_states[h0 > np.random.random(h0.shape)] = 1 # print('h0',h0.shape) # 反向重构 计算v1 v1 = self.backward(h0_states) v1_states = np.zeros_like(v1) v1_states[v1 > np.random.random(v1.shape)] = 1 # print('v1',v1.shape) # 前向传播 计算h1 h1 = self.forword(v1_states) h1_states = np.zeros_like(h1) h1_states[h1 > np.random.random(h1.shape)] = 1 # print('h1',h1.shape) '''更新参数 权重和偏置 使用栋梁的随机梯度下降法''' # 计算batch_size个样本的梯度估计值 dW = np.dot(h0_states.T, v0) - np.dot(h1_states.T, v1) # 沿着axis=0进行合并 db = np.sum(v0 - v1, axis=0).T dc = np.sum(h0 - h1, axis=0).T # 计算速度更新 Winc = self.momentum * Winc + self.learning_rate * (dW - self.penalty * self.weight) / self.batch_size binc = self.momentum * binc + self.learning_rate * db / self.batch_size cinc = self.momentum * cinc + self.learning_rate * dc / self.batch_size # 对于最大化对数似然函数 使用梯度下降法是加号 最小化是减号 开始更新 self.weight = self.weight + Winc self.v_bias = self.v_bias + binc self.h_bias = self.h_bias + cinc err_sum = err_sum + np.mean(np.sum((v0 - v1) ** 2, axis=1)) # 计算平均误差 err_sum = err_sum / num_batchs print('Epoch {0},err_sum {1}'.format(epoch, err_sum)) def predict(self, input_x): ''' 预测重构值 args: input_x:输入数据 ''' # 前向传播 计算h0 h0 = self.forword(input_x) h0_states = np.zeros_like(h0) # 从 0, 1 均匀分布中抽取的随机值,尽然进行比较判断是开启一个隐藏节点,还是关闭一个隐藏节点 h0_states[h0 > np.random.random(h0.shape)] = 1 # 反向重构 计算v1 v1 = self.backward(h0_states) return v1 def visualize(self, input_x): ''' 传入 形状为m xn的数据 即m表示图片的个数 n表示图像的像素个数 其中 m = row x row n = s x s args: input_x:形状为 m x n的数据 ''' # 获取输入样本的个数和特征数 m, n = input_x.shape # 获取每张图像的宽和高 默认宽=高 s = int(np.sqrt(n)) # 把所有图片以 row x row排列 row = int(np.ceil(np.sqrt(m))) # 其中多出来的row + 1是用于绘制边框的 data = np.zeros((row * s + row + 1, row * s + row + 1)) - 1.0 # 图像在x轴索引 x = 0 # 图像在y轴索引 y = 0 # 遍历每一张图像 for i in range(m): z = input_x[i] z = np.reshape(z, (s, s)) # 填充第i张图像数据 data[x * s + x + 1:(x + 1) * s + x + 1, y * s + y + 1:(y + 1) * s + y + 1] = z x = x + 1 # 换行 if (x >= row): x = 0 y = y + 1 return data def read_data(path): ''' 加载数据集 数据按行分割,每一行表示一个样本,每个特征使用空格分割 args: path:数据文件路径 ''' data = [] for line in open(path, 'r'): ele = line.split(' ') tmp = [] for e in ele: if e != '': tmp.append(float(e.strip(' '))) data.append(tmp) return data if __name__ == '__main__': # 加载MNIST数据集 总共有5000张图像,每张图像有784个像素点 MNIST数据集可以从网上下载 data = read_data('data.txt') data = np.array(data) print(data.shape) # (5000, 784) # 创建RBM网络 rbm = RBM(784, 100, max_epoch=50, learning_rate=0.05) # 开始训练 rbm.fit(data) # 显示64张手写数字 images = data[0:64] print(images.shape) a = rbm.visualize(images) fig = plt.figure(1, figsize=(8, 8)) plt.imshow(a, cmap=plt.cm.gray) plt.title('original data') # 显示重构的图像 rebuild_value = rbm.predict(images) b = rbm.visualize(rebuild_value) fig = plt.figure(2, figsize=(8, 8)) plt.imshow(b, cmap=plt.cm.gray) plt.title('rebuild data') # 显示权重 w_value = rbm.weight c = rbm.visualize(w_value) fig = plt.figure(3, figsize=(8, 8)) plt.imshow(c, cmap=plt.cm.gray) plt.title('weight value(w)') plt.show()