elvalad

修仙
求一个数组中最小的K个数

方法1:先对数组进行排序,然后遍历前K个数,此时时间复杂度为O(nlgn);

方法2:维护一个容量为K的最大堆(《算法导论》第6章),然后从第K+1个元素开始遍历,和堆中的最大元素比较,如果大于最大元素则忽略,如果小于最大元素则将次元素送入堆中,并将堆的最大元素删除,调整堆的结构;

方法3:使用快速排序的原理,选择出数组中第K大的元素,select(a[], k, low, high)

  • 选取数组中a[high]为基准,将数组分割为A1和A2,A1中的元素都比a[high]小,A[2]中的元素都比a[high]大,将a[high]放到合适的位置;
  • 如果k小于a[high]实际位置的index,则递归调用此函数select(a[], k, low, index - 1);
  • 如果k大于a[high]实际位置的index,则递归调用此函数selet(a[], k, index + 1, high);
  • 如果k等于a[hign]实际位置的index,则此时的index位置之前的数即为数组中最小的k个数;
/**
 * Created by Administrator on 2014/12/8.
 * 输入N个整数,输出最小的K个
 */
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;

public class MinKArray {
    /* 用二叉树表示一个堆 */
    private class Heap {
        private Node root;
        private class Node {
            int key;
            Node left;
            Node right;
            Node(int key) {
                this.key = key;
            }
        }

        /* 建立最大堆,将元素插入到堆的合适位置 */
        public void put(int key) {
            root = put(root, key);
        }

        private Node put(Node x, int key) {
            if (x == null)
                return new Node(key);
            int cmp = key - x.key;
            if (cmp > 0) {
                int tmp = x.key;
                x.key = key;
                key = tmp;
                x.right = put(x.right, key);
            } else if (cmp < 0) {
                x.left = put(x.left, key);
            }
            return x;
        }

        public void deleteMax() {
            root = deleteMax(root);
        }

        private Node deleteMax(Node x) {
            if (x == null)
                return null;
            if ((x.left == null) && (x.right != null)) {
                int tmp = x.key;
                x.right.key = x.key;
                x.key = tmp;
                x.right = deleteMax(x.right);
            } else if ((x.right == null) && (x.left != null)) {
                int tmp = x.key;
                x.left.key = x.key;
                x.key = tmp;
                x.left = deleteMax(x.left);
            } else if ((x.left == null) && (x.right == null)) {
                x = null;
            } else {
                int cmp = x.left.key - x.right.key;
                if (cmp >= 0) {
                    int tmp = x.key;
                    x.key = x.left.key;
                    x.left.key = tmp;
                    x.left = deleteMax(x.left);
                } else {
                    int tmp = x.key;
                    x.key = x.right.key;
                    x.right.key = tmp;
                    x.right = deleteMax(x.right);
                }
            }
            return x;
        }

        public void printHeap(Node x) {
            if (x == null)
                return;
            System.out.print(x.key + " ");
            printHeap(x.left);
            printHeap(x.right);
        }
    }

    /* 使用一般的排序算法,然后顺序输出前K个元素 */
    public int[] minKArray1(int[] a, int k) {
        Arrays.sort(a);
        for (int i = 0; i < k; i++) {
            System.out.print(a[i] + " ");
        }
        return Arrays.copyOfRange(a, 0, k);
    }

    /* 求出数组中第K大的元素,然后顺序遍历所有元素 */
    public int[] minKArray2(int[] a, int k) {
        minKArray2(a, k, 0, a.length - 1);
        return a;
    }

    /* 利用快速排序的原理,以a[high]为基准,将a[high]放到相应的位置
    *  左边的都比它小,右边的都比它大 */
    private void minKArray2(int[] a, int k, int low, int high) {
        if (low <= high) {
            int l = low, r = high - 1;
            int x = a[high];
            for (int i = low; i < high; i++) {
                if (l <= r) {
                    if (a[l] > x) {
                        int tmp = a[r];
                        a[r] = a[l];
                        a[l] = tmp;
                        r--;
                    }
                    if (a[l] <= x) {
                        l++;
                    }
                }
            }
            int tmp = a[l];
            a[l] = a[high];
            a[high] = tmp;

            if (l < k) {
                minKArray2(a, k, l + 1, high);
            } else if (l > k) {
                minKArray2(a, k, low, l - 1);
            } else {
                for (int i = 0; i < k; i++) {
                    System.out.print(a[i] + " ");
                }
            }
        }
    }

    /* 维护一个容量为K的最大堆,《算法导论》第6章堆排序 */
    public int[] minKArray3(int[] a, int k) {
        Heap h = new Heap();
        for (int i = 0; i < k; i++) {
            h.put(a[i]);
        }
        for (int i = k; i < a.length; i++) {
            if (a[i] >= h.root.key) {
                continue;
            } else {
                h.put(a[i]);
                h.deleteMax();
            }
        }
        h.printHeap(h.root);
        return a;
    }

    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        ArrayList<Integer> array = new ArrayList<Integer>();
        while (scan.hasNext()) {
            array.add(scan.nextInt());
        }
        int[] a = new int[array.size()];
        for (int i = 0; i < a.length; i++) {
            a[i] = array.get(i);
        }
        MinKArray mka = new MinKArray();
        mka.minKArray1(a, 8);
        System.out.println();
        mka.minKArray2(a, 8);
        System.out.println();
        mka.minKArray3(a, 8);
        System.out.println();
    }
}

 

posted on 2014-12-08 23:38  elvalad  阅读(304)  评论(0编辑  收藏  举报