A*算法的理解与实现

A*的理解与实现

一句话概括:A*是一种启发式搜索算法。

原理参考:https://www.gamedev.net/reference/articles/article2003.asp

代码参考:https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/AStar/a_star.py

现在让我们一点点掰开这个代码的逻辑:

整体结构:

Astar类:

class   AStarPlanner:
	# 地图初始化
    def __init__(self, ox, oy, resolution, rr):
    # 节点初始化
    class Node:
        def __init__(self, x, y, cost, parent_index):
        def __str__(self):
    #路径规划函数
    def planning(self, sx, sy, gx, gy):
    def calc_final_path(self, goal_node, closed_set):
        
    def calc_heuristic(n1, n2):
    def calc_grid_position(self, index, min_position):
    def calc_xy_index(self, position, min_pos):
    def calc_grid_index(self, node):
    def verify_node(self, node):
    def calc_obstacle_map(self, ox, oy):
        
    def get_motion_model():

主函数:

# set obstacle positions      生成障碍物位置
ox, oy = [], []
for i in range(-10, 60):
    ox.append(i)
    oy.append(-10.0)
for i in range(-10, 60):
    ox.append(60.0)
    oy.append(i)
for i in range(-10, 61):
    ox.append(i)
    oy.append(60.0)
for i in range(-10, 61):
    ox.append(-10.0)
    oy.append(i)
for i in range(-10, 40):
    ox.append(20.0)
    oy.append(i)
for i in range(0, 40):
    ox.append(40.0)
    oy.append(60.0 - i)

if show_animation:  # pragma: no cover
    plt.plot(ox, oy, ".k")   #  障碍物
    plt.plot(sx, sy, "og")   # 起始点
    plt.plot(gx, gy, "xb")   # 目标点
    plt.grid(True)
    plt.axis("equal")

a_star = AStarPlanner(ox, oy, grid_size, robot_radius)    
# 初始化,输入地图信息
"""
Initialize grid map for a star planning
ox: x position list of Obstacles [m]
ox: list[Union[int, float]] = []
oy: y position list of Obstacles [m]
oy: list[Union[float, int]] = []
grid_size/resolution: grid resolution [m]   float
robot_radius/rr: robot radius[m]          float
"""

rx, ry = a_star.planning(sx, sy, gx, gy) 
# 路径规划函数:传入起始点和终点(注意这里和前面传参数的区别

if show_animation:  # pragma: no cover
    plt.plot(rx, ry, "-r")
    plt.pause(0.001)
    plt.show()

地图初始化

a_star = AStarPlanner(ox, oy, grid_size, robot_radius)    


def __init__(self, ox, oy, resolution, rr):
"""
        Initialize grid map for a star planning
        ox: x position list of Obstacles [m]
        oy: y position list of Obstacles [m]
        resolution: grid resolution [m]
        rr: robot radius[m]
"""
    self.resolution = resolution  # 分辨率
    self.rr = rr
    self.min_x, self.min_y = 0, 0
    self.max_x, self.max_y = 0, 0
    self.obstacle_map = None
    self.x_width, self.y_width = 0, 0
    self.motion = self.get_motion_model()  # 搜索移动模式
    self.calc_obstacle_map(ox, oy)   #  构建地图

self.calc_obstacle_map(ox, oy)

def calc_obstacle_map(self, ox, oy):

    self.min_x = round(min(ox))
    self.min_y = round(min(oy))
    self.max_x = round(max(ox))
    self.max_y = round(max(oy))
    print("min_x:", self.min_x)
    print("min_y:", self.min_y)
    print("max_x:", self.max_x)
    print("max_y:", self.max_y)
# round(x,n)  四舍五入    当n不存在时,返回整数  
    self.x_width = round((self.max_x - self.min_x) / self.resolution)   #  计算map宽度,从真实值换到栅格个数
    self.y_width = round((self.max_y - self.min_y) / self.resolution)
    print("x_width:", self.x_width)  #栅格障碍物横坐标
    print("y_width:", self.y_width)  #栅格障碍物纵坐标

    # obstacle map generation
    self.obstacle_map = [[False for _ in range(self.y_width)]
                         for _ in range(self.x_width)]
    for ix in range(self.x_width):
        x = self.calc_grid_position(ix, self.min_x)
        for iy in range(self.y_width):
            y = self.calc_grid_position(iy, self.min_y)
            for iox, ioy in zip(ox, oy):
                d = math.hypot(iox - x, ioy - y)
                if d <= self.rr:
                    self.obstacle_map[ix][iy] = True
                    break
#  PS:这里的x,y相当于global_planner里的plan_ox,plan_oy         
# zip()函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。在这里相当于每一个ox和oy组成(ox,oy):栅格中的障碍物坐标   
# math.hypot   计算平方和的平方根——计算距离           
def calc_grid_position(self, index, min_position):
        pos = index * self.resolution + min_position
        return pos
# 总之,这里的for循环相当于在栅格地图里将robot可能碰到障碍物的栅格都标为true?  障碍物膨胀?以栅格为单位?

#  最终得到obstacle_map,横纵坐标均以栅格为单位,值False表示无障碍,True表示障碍

self.get_motion_model()

def get_motion_model():
    # dx, dy, cost
    motion = [[1, 0, 1],
              [0, 1, 1],
              [-1, 0, 1],
              [0, -1, 1],
              [-1, -1, math.sqrt(2)],
              [-1, 1, math.sqrt(2)],
              [1, -1, math.sqrt(2)],
              [1, 1, math.sqrt(2)]]

    return motion

Node类

def __init__(self, x, y, cost, parent_index):
    self.x = x  # index of grid
    self.y = y  # index of grid
    self.cost = cost
    self.parent_index = parent_index

def __str__(self):    #  对我来说似乎没什么用?但好像可以实时展示搜索
    return str(self.x) + "," + str(self.y) + "," + str(
        self.cost) + "," + str(self.parent_index)

'''
__str__()函数的作用:
打印一个实例化对象时,打印的其实时一个对象的地址。而通过__str__()函数就可以帮助我们打印对象中具体的属性值,或者你想得到的东西。

因为在python中调用print()打印实例化对象时会调用__str__()如果__str__()中有返回值,就会打印其中的返回值。

所以在这里如果我们print(Node),就会显示_str_里面的东西
'''

def planning(self, sx, sy, gx, gy)

"""
A star path search
input:
    s_x: start x position [m]
    s_y: start y position [m]
    gx: goal x position [m]
    gy: goal y position [m]
output:
    rx: x position list of the final path
    ry: y position list of the final path
"""
# 将初始点、目标点坐标映射到栅格地图,并定义cost和parent_index
start_node = self.Node(self.calc_xy_index(sx, self.min_x),
                       self.calc_xy_index(sy, self.min_y), 0.0, -1)
goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
                      self.calc_xy_index(gy, self.min_y), 0.0, -1)


open_set, closed_set = dict(), dict()   # dict()   字典
open_set[self.calc_grid_index(start_node)] = start_node

while 1:
    if len(open_set) == 0:
        print("Open set is empty..")
        break

    c_id = min(
        open_set,
        key=lambda o: open_set[o].cost + self.calc_heuristic(goal_node,
                                                             open_set[
                                                                 o]))
    current = open_set[c_id]
'''
    # show graph
    if show_animation:  # pragma: no cover
        plt.plot(self.calc_grid_position(current.x, self.min_x),
                 self.calc_grid_position(current.y, self.min_y), "xc")
        # for stopping simulation with the esc key.
        plt.gcf().canvas.mpl_connect('key_release_event',
                                     lambda event: [exit(
                                         0) if event.key == 'escape' else None])
        if len(closed_set.keys()) % 10 == 0:
            plt.pause(0.001)
'''

    if current.x == goal_node.x and current.y == goal_node.y:
        print("Find goal")
        goal_node.parent_index = current.parent_index
        goal_node.cost = current.cost
        break

    # Remove the item from the open set
    del open_set[c_id]

    # Add it to the closed set
    closed_set[c_id] = current

    # expand_grid search grid based on motion model
    for i, _ in enumerate(self.motion):
        node = self.Node(current.x + self.motion[i][0],
                         current.y + self.motion[i][1],
                         current.cost + self.motion[i][2], c_id)
        n_id = self.calc_grid_index(node)

        # If the node is not safe, do nothing
        if not self.verify_node(node):
            continue

        if n_id in closed_set:
            continue

        if n_id not in open_set:
            open_set[n_id] = node  # discovered a new node
        else:
            if open_set[n_id].cost > node.cost:
                # This path is the best until now. record it
                open_set[n_id] = node

rx, ry = self.calc_final_path(goal_node, closed_set)

return rx, ry

里面用到的数据处理函数:

def calc_final_path(self, goal_node, closed_set):
    # generate final course
    rx, ry = [self.calc_grid_position(goal_node.x, self.min_x)], [
        self.calc_grid_position(goal_node.y, self.min_y)]
    parent_index = goal_node.parent_index
    while parent_index != -1:
        n = closed_set[parent_index]
        rx.append(self.calc_grid_position(n.x, self.min_x))
        ry.append(self.calc_grid_position(n.y, self.min_y))
        parent_index = n.parent_index

    return rx, ry
def calc_xy_index(self, position, min_pos):    
return round((position - min_pos) / self.resolution)

def calc_grid_index(self, node):   
return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
def verify_node(self, node):    
px = self.calc_grid_position(node.x, self.min_x)    
py = self.calc_grid_position(node.y, self.min_y)    
if px < self.min_x:       
	return False    
elif py < self.min_y:        
	return False    
elif px >= self.max_x:        
	return False    
elif py >= self.max_y:        
	return False    # collision check    
if self.obstacle_map[node.x][node.y]:     return False  
return True
posted @ 2021-05-16 17:02  Elsy  阅读(585)  评论(0编辑  收藏  举报