动态规划——独立任务最优调度(Independent Task Scheduling)

题目链接

题目描述

用2 台处理机A 和B 处理n 个作业。设第i 个作业交给机器A 处理时需要时间i a ,若由机器B 来处理,则需要时间i b 。由于各作业的特点和机器的性能关系,很可能对于某些i,有ai >=bi,而对于某些j,j≠i,有aj < bj 。既不能将一个作业分开由2 台机器处理,也没有一台机器能同时处理2 个作业。设计一个动态规划算法,使得这2 台机器处理完这n个作业的时间最短(从任何一台机器开工到最后一台机器停工的总时间)。研究一个实例: (a1,a2,a3,a4,a5,a6)=(2,5,7,10,5,2);(b1,b2,b3,b4,b5,b6)=(3,8,4,11,3,4)。 对于给定的2 台处理机A 和B处理n 个作业,找出一个最优调度方案,使2台机器处理完这n 个作业的时间最短。

输入

的第1行是1个正整数n<=200, 表示要处理n个作业。 接下来的2行中,每行有n 个正整数,分别表示处理机A 和B 处理第i 个作业需要的处理时间。

输出

最短处理时间

样例输入

复制
6
2 5 7 10 5 2
3 8 4 11 3 4

样例输出

15

题解:
这道题是说有N个作业可以在两个机器A,B上操作,同一个作业在A,B上不能同时进行,并且在A,B上的操作时间不同,所以我们要考虑从1~n个作业,哪些在A上,哪些在B上操作,所需要的时间最短。
用动态规划的思想,我们做这样的思考:当操作第i个作业时,我们选A还是B机器?在题目的要求下,我们就需要根据i-1的操作和i操作之间的关联来解题了。

先定义变量:a[i]-操作i在机器A上的时间
b[i]-操作i在机器B上的时间
f[i][j]操作到第i个作业时,在A机器已经花费j时间的情况下,找到b机器操作的时间

这道题可以这样来做:当我们全部选A操作的时候,时间上限为a[i]的和,即suma,所以作业从1~n在A上操作的时间都不会超过suma。
我们就可以在A机器操作时间0<=j<=suma的范围内,操做到第i个操作时,在B机器上所花的最短时间。
最短时间:1.当a[i] >j时,f[i][j]=f[i-1][j]+b[i];即在操作到i作业时,A机器所花费的时间大于j,所以不能再A机器上操作了,所以这时应该选择B机器,就要找在操作到i-1作业时,
A机器已经花费j时间的情况下,B机器已经操作的时间f[i-1][j],然后在i操作时选了B,就是f[i-1][j]+b[i]了。
2.当a[i]<=j时,f[i][j]=min(f[i-1][j-a[i]],f[i-1][j]+b[i]);,可能选A机器,可能选B机器,如果选A机器,接要找在操作到i-1作业,A已经花费的时间为j-a[i]时B机器的时间f[i-1][j-a[i]],因为没选B,所以这时候f[i][j]的时间与f[i-1][j-a[i]]相等。

当操作到第n个操作时,从A机器操作时间0~suma的情况下,各个B机器操作的最短时间就找出来了。我们要在A机器花费时间0~suma的时间段里,逐一比较A,B机器的时间,会按最长的时间选出A,B机器的代表,
再在这suma个时间代表中选出最小的哪一个作为最短花时间。
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define MAX 201
int a[MAX];//a[i],A机器 处理i作业花费时间 
int b[MAX];//b[i],B机器 处理i作业花费时间 
int f[MAX][10000];// f[i][j],在处理i作业时A机器花费j时间的情况下B机器花费的最小时间 
int suma=0;//如果所有作业全部由A机器处理,最大时间限制 
int min(int x,int y)
{
    return x<y?x:y;
}
int max(int x,int y)
{
    return x>y?x:y;
}
int dealWith(int n)
{

    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<=suma;j++)
        {
            if(a[i]<=j)
            {
                f[i][j]=min(f[i-1][j-a[i]],f[i-1][j]+b[i]);
            }
            else
            {
                f[i][j]=f[i-1][j]+b[i];
            }
    
            
        }
    
    }
    int m=99999;
    for(int j=1;j<=suma;j++)
    {
        int t;
        t=max(j,f[n][j]);
        m=min(m,t);    
    
    }
    
    return m;
}
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        suma+=a[i]; 
    } 
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&b[i]);
    }
    int m=dealWith(n); 
    printf("%d\n",m);
    return 0;
 } 

 

 
posted @ 2019-06-12 16:46  ellenxx  阅读(4182)  评论(0编辑  收藏  举报