sets,relations,and fuctions

mod补充:

1 = 12 mod 3

1 = 12 mod 4

1 = 12 mod 12(12=3*4)

但是这不是一定的,反例如下:

0 = 24 mod 12

0 = 24 mod 4

0 != 24 mod 48

1. set是无顺序无重复的集合,{}不等于{{}},因为后者包含一个元素

2. define sets

(1) 直接将元素枚举出来

(2)定义现有通用集合的子集

如指定元素必须满足的属性如x是自然数;

使用区间,如[1,5]={1,2,3,4,5}

派生整数集,如3z+1 = {3x+1:x∈Z}

(3)结合已经存在的集合

union(U)

intersection(∩)

complement 表示方法为A的c次方,x包含于全集,不包含于A

A and B are disjoint if A∩B = ∅

sest difference(A \ B) a but not b

symmetric difference(A⊕B) a and not b or b and not a, A⊕B = (A\B)∪(B \A)

X中元素个数表示为|X|,|Pow(x)|总是等于2的|x|次方

3. 子集S ⊆ T,包括T ⊆ T

真子集S ⊂ T,S ⊆ T and S 6= T

∅是任何集合的子集

正整数⊂N⊂Z⊂Q⊂R

!!!注意区分子集与元素的概念,a ∈{a,b}, a 不⊆{a,b}; {a}⊆{a,b}, {a}  不∈{a,b}

4. power set pow(x)={A:A⊆ X}

pow(∅)={∅}

pow(pow(∅))={∅,{∅}}

5. |AUB|=|A|+|B|-|A∩B|

|AUB|+|A∩B|=|A|+|B|

|A\B|=|A|-|A∩B|

|A⊕B|=|AUB|-|A∩B|=|A+B|-2|A∩B|

6. formal language:empty word — λ

7. x*是由x中的0个或多个单词串联而成的一组单词

A = {aa,bb}, A∗ = {λ,aa,bb,aaaa,aabb,bbaa,bbbb,aaaaaa,...}

8.

9. relation可以只选取sets中的一部分element,不需要做到一一对应

symmetric指使两边关系对称的relation,如等于和不等于,等号两边对调也是成立的;不symmetric的包括大于等于,小于等于等

同时relation也可以分为binary relation和congruence relation,上节课讲到的mod涉及到三个element,就属于congruence relation

10.

 

 

 

 

 

 11. exercises中的A = {1,2}, B = {2,3}, C = {3,4}, X = [1,4],求 | on x做法是先做出所有可能的笛卡尔积,再从中找到符合条件的,本题中即可以被整除的,答案为{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4))}

12. function中,左边的点均有relation可以对应

13. composition of functions

 

14. iterated(迭代):一个数的function仍是它本身,f o f, f o f o f, 也可以表示为f的二次方,f的三次方

15. 

 

f;g means do f and then do g

16. a linear function compose itself can still get a linear function,如exercise中的g(n)=5n-11,g(g(n))=25n-66,也是线性的

17. Function is called surjective or onto if every element of the codomain is mapped to by at least one x in the domain
Im(f ) = Codom(f )

 surjective的例子:floor,ceiling

错误例子f(x)=x^2

f : {a,...,e}∗ −→{a,...,e}∗只要a开头e结尾的都符合,所以不对

18. Function is called injective or 1–1 (one-to-one) if different x implies different f (x)

different input can get different output

!! Function is bijective if it is both surjective and injective.

19. 证明sets相同

a. 检查所有element

b. 证明a包含于b且b包含于a

c. 利用laws of set operators,如下图

 

posted on 2019-09-23 21:12  Eleni  阅读(309)  评论(0编辑  收藏  举报

导航