number theory
read Sec. 1.1-1.3; Sec.3.5
1. natural numbers自然数 N:{0,1,2. . .}
integers整数 Z:{. . .-1,0,1,2. . .}
positive integers:正整数,不包含0
rational numbers(fractions)有理数 Q={m/n : m,n 均为整数}
real numbers(decimal小数 or binary expansions)实数 R
2. floor and ceiling
3. 上课没听懂的部分
4. divides表述的是一种关系,所以可以出现0,表述为m | n
5. the greatest common divisor of m and n, gcd(m,n) is the largest positive d such that d|m and d|n最大公约数
the least common multiple of m and n, lcm(m,n), is the smallest positive k such that m|k and n|k最小公倍数
两个数永远为正数
6. 若m,n除1外没有其他公约数,则m,n为relatively prime
7. m,n为正数时,gcd(m,n) * lcm(m,n)=|m| * |n|
8. gcd(0,n) = n
9.
10. mod and div
mod means ignoring this part
div take the floor, that is why -42 div 9 = -5
11. m = p(mod n) if and only if (m%n) = (p%n)
if m = m'(mod n) and p = p'(mod n) then:
m+p = m'+p'(mod n) and
m*p = m'*p'(mod n)
12. 辗转相除法
13.