机器学习(七)—Adaboost 和 梯度提升树GBDT
1、Adaboost算法原理,优缺点:
理论上任何学习器都可以用于Adaboost.但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络。对于决策树,Adaboost分类用了CART分类树,而Adaboost回归用了CART回归树。
Adaboost算法可以简述为三个步骤:
(1)首先,是初始化训练数据的权值分布D1。假设有N个训练样本数据,则每一个训练样本最开始时,都被赋予相同的权值:w1=1/N。
(2)然后,训练弱分类器hi。具体训练过程中是:如果某个训练样本点,被弱分类器hi准确地分类,那么在构造下一个训练集中,它对应的权值要减小;相反,如果某个训练样本点被错误分类,那么它的权值就应该增大。权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
(3)最后,将各个训练得到的弱分类器组合成一个强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。
换而言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。
Adaboost的主要优点有:
1)Adaboost作为分类器时,分类精度很高。
2)在Adaboost的框架下,可以使用各种回归分类模型来构建弱学习器,不用对特征进行筛选,非常灵活。
3)作为简单的二元分类器时,构造简单,结果可理解。
4)不容易发生过拟合。
Adaboost的主要缺点有:
1)对异常样本敏感,异常样本在迭代中可能会获得较高的权重,影响最终的强学习器的预测准确性。
算法推导见笔记。
2、GBDT算法原理
GBDT在BAT大厂中也有广泛的应用,假如要选择3个最重要的机器学习算法的话,个人认为GBDT应该占一席之地。
基本思想:积跬步以至千里,每次学习一点。先用一个初始值来学习一棵决策树,叶子处可以得到预测的值,以及预测之后的残差,然后后面的决策树就是要基于前面决策树的残差来学习,直到预测值和真实值的残差为0。最后对于测试样本的预测值,就是前面许多棵决策树预测值的累加。
GBDT的思想可以用一个通俗的例子解释,假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。
GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型.(GBDT的会累加所有树的结果,而这种累加是无法通过分类完成的,因此GBDT的树都是CART回归树,而不是分类树(尽管GBDT调整后也可以用于分类但不代表GBDT的树为分类树))
它的每一次计算都是为了减少上一次的残差,而为了消除残差,我们可以在残差减小的梯度方向上建立模型,所以说,在GradientBoost中,每个新的模型的建立是为了使得之前的模型的残差往梯度下降的方法,与传统的Boosting中关注正确错误的样本加权有着很大的区别。
GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮分类器的残差基础上进行训练。对弱分类器的要求一般是足够简单,并且是低方差和高偏差的。因为训练的过程是通过降低偏差来不断提高最终分类器的精度。
通过损失函数的负梯度来拟合,我们找到了一种通用的拟合损失误差的办法,这样无轮是分类问题还是回归问题,我们通过其损失函数的负梯度的拟合,就可以用GBDT来解决我们的分类回归问题。区别仅仅在于损失函数不同导致的负梯度不同而已。
3、GBDT算法步骤
损失函数主要有:指数损失、对数损失、均方差、绝对损失
让损失函数沿着梯度方向的下降。这个就是gbdt 的 gb的核心了。 利用损失函数的负梯度在当前模型的值作为回归问题提升树算法中的残差的近似值去拟合一个回归树。gbdt 每轮迭代的时候,都去拟合损失函数在当前模型下的负梯度。
由于上述高偏差和简单的要求,每个分类回归树的深度不会很深。最终的总分类器 是将每轮训练得到的弱分类器加权求和得到的(也就是加法模型)。
对于回归问题:
对于分类问题:样本输出不是连续的值,而是离散的类别,导致我们无法直接从输出类别去拟合类别输出的误差。
主要有两个方法:一个是用指数损失函数,此时GBDT退化为Adaboost算法。另一种方法是用类似于逻辑回归的对数似然损失函数的方法。也就是说,我们用的是类别的预测概率值和真实概率值的差来拟合损失。
4、gbdt 如何构建特征
gbdt 本身是不能产生特征的,但是我们可以利用gbdt去产生特征的组合。利用gbdt去产生特征的组合,再采用逻辑回归进行处理,增强逻辑回归对非线性分布的拟合能力。
我们 使用 GBDT 生成了两棵树,两颗树一共有五个叶子节点。我们将样本 X 输入到两颗树当中去,样本X 落在了第一棵树的第二个叶子节点,第二颗树的第一个叶子节点,于是我们便可以依次构建一个五纬的特征向量,每一个纬度代表了一个叶子节点,样本落在这个叶子节点上面的话那么值为1,没有落在该叶子节点的话,那么值为 0。于是对于该样本,我们可以得到一个向量[0,1,0,1,0] 作为该样本的组合特征,和原来的特征一起输入到逻辑回归当中进行训练。实验证明这样会得到比较显著的效果提升。
补充:
GBDT选择特征的细节其实是想问你CART Tree生成的过程。CART TREE 生成的过程其实就是一个选择特征的过程。
选择特征是:遍历每个特征和每个特征的所有切分点,找到最优的特征和最优的切分点。多个CART TREE 生成过程中,选择最优特征切分较多的特征就是重要的特征。
5、GBDT 如何用于分类 ?
参考:https://www.cnblogs.com/ModifyRong/p/7744987.html
gbdt 无论用于分类还是回归一直都是使用的CART 回归树。这里面的核心是因为gbdt 每轮的训练是在上一轮的训练的残差基础之上进行训练的。这里的残差就是当前模型的负梯度值 。这个要求每轮迭代的时候,弱分类器的输出的结果相减是有意义的。残差相减是有意义的,类别相减是没有意义的。
方法流程:
(1)我们在训练的时候,是针对样本 X 每个可能的类都训练一个分类回归树。举例说明,目前样本有三类,也就是 K = 3。样本 x 属于 第二类。那么针对该样本 x 的分类结果,其实我们可以用一个 三维向量 [0,1,0] 来表示。0表示样本不属于该类,1表示样本属于该类。由于样本已经属于第二类了,所以第二类对应的向量维度为1,其他位置为0。
针对样本有 三类的情况,我们实质上是在每轮的训练的时候是同时训练三颗树。第一颗树针对样本x的第一类,输入为(x,0)。第二颗树输入针对 样本x 的第二类,输入为(x,1)。第三颗树针对样本x 的第三类,输入为(x,0)。
在这里每颗树的训练过程其实就是就是我们之前已经提到过的CATR TREE 的生成过程。在此处我们参照之前的生成树的程序 即可以就解出三颗树,以及三颗树对x 类别的预测值f1(x),f2(x),f3(x)。那么在此类训练中,我们仿照多分类的逻辑回归 ,使用softmax 来产生概率,则属于类别 1 的概率。
这样我们可以遍历所有特征的所有特征值,找到让均方损失最小的特征以及其对应的特征值。生成三颗树后,对于测试样本预测概率。
6、GBDT 正则化
和Adaboost一样,我们也需要对GBDT进行正则化,防止过拟合。GBDT的正则化主要有三种方式。
(1)第一种是和Adaboost类似的正则化项,即步长(learning rate)。定义为𝜈ν,对于前面的弱学习器的迭代;
如果我们加上了正则化项,则有 𝑓𝑘(𝑥)=𝑓𝑘−1(𝑥)+𝜈ℎ𝑘(𝑥)fk(x)=fk−1(x)+νhk(x)
𝜈ν的取值范围为0<𝜈≤10<ν≤1。对于同样的训练集学习效果,较小的𝜈ν意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果。
(2)正则化的方式是通过子采样比例(subsample)。
取值为(0,1]。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。如果取值为1,则全部样本都使用,等于没有使用子采样。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。推荐在[0.5, 0.8]之间。
使用了子采样的GBDT有时也称作随机梯度提升树(Stochastic Gradient Boosting Tree, SGBT)。由于使用了子采样,程序可以通过采样分发到不同的任务去做boosting的迭代过程,最后形成新树,从而减少弱学习器难以并行学习的弱点。
(3)第三种是对于弱学习器即CART回归树进行正则化剪枝。在决策树原理篇里我们已经讲过,这里就不重复了。
7、优缺点:
目前GBDT的算法比较好的库是xgboost。当然scikit-learn也可以。
GBDT主要的优点有:
1) 可以灵活处理各种类型的数据,包括连续值和离散值,处理分类和回归问题。
2) 在相对少的调参时间情况下,预测的准备率也可以比较高。这个是相对SVM来说的。
3) 可以用于筛选特征。
4)使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。
GBDT的主要缺点有:
1)由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。
8、GBDT和随机森林对比
相同点:1.都是由多棵树组成;2.最终的结果都是由多棵树一起决定;
不同点:(1)随机森林的子树可以是分类或回归树,而GBDT只能是回归树;
(2)基于bagging思想,而gbdt是boosting思想,即采样方式不同
(3)随机森林可以并行生成,而GBDT只能是串行;
(4)输出结果,随机森林采用多数投票,GBDT将所有结果累加起来;
(5)随机森林对异常值不敏感,GBDT敏感,随进森林减少方差,GBDT减少偏差;
(6)所以,GRDT 更容易过拟合;
9、比较LR和GBDT,大规模离散特征 情景下GBDT不如LR?
- LR是线性模型,可解释性强,很容易并行化,但学习能力有限,需要大量的人工特征工程;
- GBDT是非线性模型,具有天然的特征组合优势,特征表达能力强,但是树与树之间无法并行训练,而且树模型很容易过拟合;
当在高维稀疏特征的场景下,LR的效果一般会比GBDT好,带正则化的线性模型比较不容易对稀疏特征过拟合。
举例子:假设一个二分类问题,label为0和1,特征有100维,如果有1w个样本,但其中只要10个正样本1,而这些样本的特征 f1的值为全为1,而其余9990条样本的f1特征都为0(在高维稀疏的情况下这种情况很常见)。我们都知道在这种情况下,树模型很容易优化出一个使用f1特征作为重要分裂节点的树,因为这个结点直接能够将训练数据划分的很好,但是当测试的时候,却会发现效果很差,因为这个特征f1只是刚好偶然间跟y拟合到了这个规律,这也是我们常说的过拟合。
仔细想想发现,因为现在的模型普遍都会带着正则项,而 LR 等线性模型的正则项是对权重的惩罚,也就是 W1一旦过大,惩罚就会很大,进一步压缩 W1的值,使他不至于过大。但是,树模型则不一样,树模型的惩罚项通常为叶子节点数和深度等,而我们都知道,对于上面这种 case,树只需要一个节点就可以完美分割9990和10个样本,一个结点,最终产生的惩罚项极其之小。
10、决策树模型不推荐对离散特征进行独热编码,有以下两个主要原因:
-
(1)产生样本切分不平衡问题,此时切分增益会非常小。
比如对血型做独热编码操作,那么对每个特征
是否 A 型、是否 B 型、是否 AB 型、是否 O 型
,会有少量样本是 1 ,大量样本是 0。这种划分的增益非常小,因为拆分之后:
-
较小的那个拆分样本集,它占总样本的比例太小。无论增益多大,乘以该比例之后几乎可以忽略。
-
较大的那个拆分样本集,它几乎就是原始的样本集,增益几乎为零。
-
-
(2)影响决策树的学习。
决策树依赖的是数据的统计信息。而独热码编码会把数据切分到零散的小空间上。在这些零散的小空间上,统计信息是不准确的,学习效果变差。
本质是因为独热编码之后的特征的表达能力较差。该特征的预测能力被人为的拆分成多份,每一份与其他特征竞争最优划分点都失败。最终该特征得到的重要性会比实际值低。