机器学习第二次作业

机器学习第二次作业

又到了说题外话的时候,感觉学的东西和代码实现有点脱节。不过整体代码实现完,发现自己对分类器包括公式有了更深的理解。

题目1,2

1. Iris数据集已与常见的机器学习工具集成,请查阅资料找出MATLAB平台或Python平台加载内置Iris数据集方法,并简要描述该数据集结构。

2. Iris数据集中有一个种类与另外两个类是线性可分的,其余两个类是线性不可分的。请你通过数据可视化的方法找出该线性可分类并给出判断依据。

代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris

#白化函数    
def zca_whitening(inputs):
    sigma = np.dot(inputs, inputs.T)/inputs.shape[1] #inputs是经过归一化处理的,所以这边就相当于计算协方差矩阵
    U,S,V = np.linalg.svd(sigma) #奇异分解
    epsilon = 0.1                #白化的时候,防止除数为0
    ZCAMatrix = np.dot(np.dot(U, np.diag(1.0/np.sqrt(np.diag(S) + epsilon))), U.T)                     #计算zca白化矩阵
    return np.dot(ZCAMatrix, inputs)   #白化变换

iris = load_iris()  # 加载机器学习的下的iris数据集,先来认识一下iris数据集的一些操作,其实iris数据集就是一个字典集。下面注释的操作,可以帮助理解

#调用白化函数

print(iris.keys())  # 打印iris索引,关键字

n_sample, n_features = iris.data.shape

print(iris.data.shape[0])  # 样本
print(iris.data.shape[1])  # 4个特征
#
#print(n_sample, n_features)
#
print(iris.data[0])
#
print(ir代码is.target.shape)
print(iris.target)  # 三个种类,分别用0,1,2来表示
print(iris.target_names)  # 三个种类的英文名称

print("feature_names:", iris.feature_names)

# iris_setosa = zca_whitening(iris.data[:50])  # 第一种花的数据
# iris_versicolor = zca_whitening(iris.data[50:100])  # 第二种花的数据
# iris_virginica = zca_whitening(iris.data[100:150])  # 第三种花的数据


iris_setosa = iris.data[:50]  # 第一种花的数据
iris_versicolor = iris.data[50:100]  # 第二种花的数据
iris_virginica = iris.data[100:150]  # 第三种花的数据


iris_setosa = np.hsplit(iris_setosa, 4)  # 运用numpy.hsplit水平分割获取各特征集合,分割成四列
iris_versicolor = np.hsplit(iris_versicolor, 4)
iris_virginica = np.hsplit(iris_virginica, 4)


size = 5  # 散点的大小
setosa_color = 'b'  # 蓝色代表setosa
versicolor_color = 'g'  # 绿色代表versicolor
virginica_color = 'r'  # 红色代表virginica

label_text = ['Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width']

# print(ticks)

plt.figure(figsize=(12, 12))  # 设置画布大小
plt.suptitle("Iris Set (blue=setosa, green=versicolour, red=virginca) ", fontsize=30)

for i in range(0, 4):
    for j in range(0, 4):
        plt.subplot(4, 4, i * 4 + j + 1) # 创建子画布

        if i == j:
            print(i*4+j+1) #序列号

            plt.xticks([])
            plt.yticks([])
            plt.text(0.1, 0.4, label_text[i], size=18)

        else:
            plt.scatter(iris_setosa[j], iris_setosa[i], c=setosa_color, s=size)
            plt.scatter(iris_versicolor[j], iris_versicolor[i], c=versicolor_color, s=size)
            plt.scatter(iris_virginica[j], iris_virginica[i], c=virginica_color, s=size)
plt.show() 

结果截图

题目4

将Iris数据集白化,可视化白化结果并于原始可视化结果比较,讨论白化的作用。

代码

#白化函数    
def zca_whitening(inputs):
    sigma = np.dot(inputs, inputs.T)/inputs.shape[1] #inputs是经过归一化处理的,所以这边就相当于计算协方差矩阵
    U,S,V = np.linalg.svd(sigma) #奇异分解
    epsilon = 0.1                #白化的时候,防止除数为0
    ZCAMatrix = np.dot(np.dot(U, np.diag(1.0/np.sqrt(np.diag(S) + epsilon))), U.T)                     #计算zca白化矩阵
    return np.dot(ZCAMatrix, inputs)   #白化变换
iris_setosa = zca_whitening(iris.data[:50])  # 第一种花的数据
iris_versicolor = zca_whitening(iris.data[50:100])  # 第二种花的数据
iris_virginica = zca_whitening(iris.data[100:150])  # 第三种花的数据

结果图片

结论通过对比图片,可以得到白化的作用主要是对数据进行降维

题目3

去除Iris数据集中线性不可分的类中最后一个,余下的两个线性可分的类构成的数据集命令为Iris_linear,请使用留出法将Iris_linear数据集按7:3分为训练集与测试集,并使用训练集训练一个MED分类器,在测试集上测试训练好的分类器的性能,给出《模式识别与机器学习-评估方法与性能指标》中所有量化指标并可视化分类结果。

代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
import random

iris = load_iris()  # 加载机器学习的下的iris数据集,先来认识一下iris数据集的一些操作,其实iris数据集就是一个字典集。下面注释的操作,可以帮助理解

Iris_linear = iris.data[:100] #线性可分的数据

iris_setosa = iris.data[:50]  # 第一种花的数据

iris_versicolor = iris.data[50:100]  # 第二种花的数据

def split_train(data,test_ratio):#随机划分数据集
    shuffled_indices=np.random.permutation(len(data))
    test_set_size=int(len(data)*test_ratio)
    test_indices =shuffled_indices[:test_set_size]
    train_indices=shuffled_indices[test_set_size:]
    return data[train_indices],data[test_indices]

def eucldist(coords1, coords2):#求两点欧式距离
    dist = 0
    for (x, y) in zip(coords1, coords2):
        dist += (x - y)**2
    return dist**0.5


split = split_train(iris_setosa,0.3)

iris_setosa_train = split[0]#size35
iris_setosa_text = split[1]

split = split_train(iris_versicolor,0.3)

iris_versicolor_train = split[0]#size35
iris_versicolor_text = split[1]

class1 = []

#print(iris_setosa_train)
for j in range(0,4):
    sum = 0
    for i in range(0,35):
        sum = sum + iris_setosa_train[i][j]
    class1.append(sum/35)   
print(class1)

class2 = []

#print(iris_versicolor_train)
for j in range(0,4):
    sum = 0
    for i in range(0,35):
        sum = sum + iris_versicolor_train[i][j]
    class2.append(sum/35)   
print(class2)

for i in range (0,15):
    if (eucldist(iris_setosa_text[i], class1)<eucldist(iris_setosa_text[i], class2)):
        print("true")
    else:
        print("falus")

for i in range (0,15):
    if (eucldist(iris_versicolor_text[i], class2)<eucldist(iris_versicolor_text[i], class1)):
        print("true")
    else:
        print("falus")

versicolor_color = 'g'  # 绿色代表versicolor
setosa_color = 'r'  # 红色代表virginica
size = 5  # 散点的大小
plt.figure(figsize=(12, 12))  # 设置画布大小
x=np.linspace(5,7,50)
for i in range(0,15):
    plt.scatter(iris_setosa_text[i][0], iris_setosa_text[i][0], c=setosa_color, s=size)
    plt.scatter(iris_versicolor_text[i][0],iris_versicolor_text[i][0], c=versicolor_color, s=size)
    plt.plot(x,-(class1[0]-class2[0])/(class1[1]-class2[1])*x+(class1[1]+class2[1])/2+(class1[0]-class2[0])/(class1[1]-class2[1])*(class1[0]-class2[0])/2)
plt.show() 

结果图片

运行结果

Accuracy为100%

题目5

题目

去除Iris数据集中线性可分的类,余下的两个线性不可分的类构成的数据集命令为Iris_nonlinear,请使用留出法将Iris_nonlinear数据集按7:3分为训练集与测试集,并使用训练集训练一个MED分类器,在测试集上测试训练好的分类器的性能,给出《模式识别与机器学习-评估方法与性能指标》中所有量化指标并可视化分类结果。讨论本题结果与3题结果的差异。

代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
import random

iris = load_iris()  # 加载机器学习的下的iris数据集,先来认识一下iris数据集的一些操作,其实iris数据集就是一个字典集。下面注释的操作,可以帮助理解

Iris_linear = iris.data[:100] #线性可分的数据
#print(Iris_linear)

iris_setosa = iris.data[50:100]  # 第一种花的数据

iris_versicolor = iris.data[100:150]  # 第二种花的数据

def split_train(data,test_ratio):#随机划分数据集
    shuffled_indices=np.random.permutation(len(data))
    test_set_size=int(len(data)*test_ratio)
    test_indices =shuffled_indices[:test_set_size]
    train_indices=shuffled_indices[test_set_size:]
    return data[train_indices],data[test_indices]

def eucldist(coords1, coords2):#求两点欧式距离
    dist = 0
    for (x, y) in zip(coords1, coords2):
        dist += (x - y)**2
    return dist**0.5

#print(Iris_linear)

split = split_train(iris_setosa,0.3)

iris_setosa_train = split[0]#size35
iris_setosa_text = split[1]

split = split_train(iris_versicolor,0.3)

iris_versicolor_train = split[0]#size35
iris_versicolor_text = split[1]

class1 = []

#print(iris_setosa_train)
for j in range(0,4):
    sum = 0
    for i in range(0,35):
        sum = sum + iris_setosa_train[i][j]
    class1.append(sum/35)   
print(class1)

class2 = []

#print(iris_versicolor_train)
for j in range(0,4):
    sum = 0
    for i in range(0,35):
        sum = sum + iris_versicolor_train[i][j]
    class2.append(sum/35)   
print(class2)

for i in range (0,15):
    if (eucldist(iris_setosa_text[i], class1)<eucldist(iris_setosa_text[i], class2)):
        print("true")
    else:
        print("falus")

for i in range (0,15):
    if (eucldist(iris_versicolor_text[i], class2)<eucldist(iris_versicolor_text[i], class1)):
        print("true")
    else:
        print("falus")

setosa_color = 'g'  # 绿色代表versicolor
virginica_color = 'r'  # 红色代表virginica
size = 5  # 散点的大小
plt.figure(figsize=(12, 12))  # 设置画布大小
x=np.linspace(5,7,50)
for i in range(0,15):
    plt.scatter(iris_setosa_text[i][0], iris_setosa_text[i][0], c=setosa_color, s=size)
    plt.scatter(iris_versicolor_text[i][0],iris_versicolor_text[i][0], c=virginica_color, s=size)
plt.plot(x,-(class2[0]-class1[0])/(class2[1]-class1[1])*x+(class2[1]+class1[1])/2+(class2[0]-class1[0])/(class2[1]-class1[1])*(class2[0]-class1[0])/2)
plt.show() 

结果截图

运行结果

Accuracy为90%

题目6

题目

请使用5折交叉验证为Iris数据集训练一个多分类的贝叶斯分类器。给出平均Accuracy,并可视化实验结果。与第3题和第5题结果做比较,讨论贝叶斯分类器的优劣。

#贝叶斯分类器,使用贝叶斯公式。
#将每种样本进行5折交叉验证,先验概率相同
#所以后验概率与观测似然概率成正比,只需比较观测似然概率即可得到结果
#且决策风险定位相同
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
import math

def calculateProb(x,mean,var):
    exponent = math.exp(math.pow((x-mean),2)/(-2*var))
    p = (1/math.sqrt(2*math.pi*var))*exponent
    return p
    
iris = load_iris().data  # 加载机器学习的下的iris数据集

iris_setosa = iris[0:50]
iris_versicolor = iris[50:100]
iris_virginica = iris[100:150]

countT = 1
countF = 1
for i in range(0,5):#5折交叉验证
    
    iris_setosa_train = np.vstack((iris_setosa[0:i*10],iris_setosa[10*(i+1):50]))
    iris_setosa_text = iris_setosa[i*10:10*(i+1)]
    iris_versicolor_train = np.vstack((iris_versicolor[0:i*10],iris_versicolor[10*(i+1):50]))
    iris_versicolor_text = iris_versicolor[i*10:10*(i+1)]
    iris_virginica_train = np.vstack((iris_virginica[0:i*10],iris_virginica[10*(i+1):50]))
    iris_virginica_text = iris_virginica[i*10:10*(i+1)]
    
     #分割处理
    iris_setosa_train = np.hsplit(iris_setosa_train, 4)  # 运用numpy.hsplit水平分割获取各特征集合,分割成四列
    iris_versicolor_train = np.hsplit(iris_versicolor, 4)
    iris_virginica_train = np.hsplit(iris_virginica, 4)
    
    #求均值
    iris_setosa_train_mean = []
    iris_versicolor_train_mean = []
    iris_virginica_train_mean = []
    for j in range(0,4):
        iris_setosa_train_mean.append(np.mean(iris_setosa_train[j]))
    for j in range(0,4):
        iris_versicolor_train_mean.append(np.mean(iris_versicolor_train[j]))
    for j in range(0,4):
        iris_virginica_train_mean.append(np.mean(iris_virginica_train[j]))
    
    #求方差
    iris_setosa_train_var = []
    iris_versicolor_train_var = []
    iris_virginica_train_var = []
    for j in range(0,4):
        iris_setosa_train_var.append(np.var(iris_setosa_train[j]))
    for j in range(0,4):
        iris_versicolor_train_var.append(np.var(iris_versicolor_train[j]))
    for j in range(0,4):
        iris_virginica_train_var.append(np.var(iris_virginica_train[j]))
    
    #求观测似然概率,使用setosa验证集验证
    for j in range(0,10):
        iris_setosa_setosa_prob = calculateProb(iris_setosa_text[j][0],iris_setosa_train_mean[0],iris_setosa_train_var[0])\
        *calculateProb(iris_setosa_text[j][1],iris_setosa_train_mean[1],iris_setosa_train_var[1])\
        *calculateProb(iris_setosa_text[j][2],iris_setosa_train_mean[2],iris_setosa_train_var[2])\
        *calculateProb(iris_setosa_text[j][3],iris_setosa_train_mean[3],iris_setosa_train_var[3])
        
        iris_setosa_versicolor_prob = calculateProb(iris_setosa_text[j][0],iris_versicolor_train_mean[0],iris_versicolor_train_var[0])\
        *calculateProb(iris_setosa_text[j][1],iris_versicolor_train_mean[1],iris_versicolor_train_var[1])\
        *calculateProb(iris_setosa_text[j][2],iris_versicolor_train_mean[2],iris_versicolor_train_var[2])\
        *calculateProb(iris_setosa_text[j][3],iris_versicolor_train_mean[3],iris_versicolor_train_var[3])
        
        iris_setosa_virginica_prob = calculateProb(iris_setosa_text[j][0],iris_virginica_train_mean[0],iris_virginica_train_var[0])\
        *calculateProb(iris_setosa_text[j][1],iris_virginica_train_mean[1],iris_virginica_train_var[1])\
        *calculateProb(iris_setosa_text[j][2],iris_virginica_train_mean[2],iris_virginica_train_var[2])\
        *calculateProb(iris_setosa_text[j][3],iris_virginica_train_mean[3],iris_virginica_train_var[3])
        
        
        if (iris_setosa_setosa_prob>iris_setosa_versicolor_prob and iris_setosa_setosa_prob>iris_setosa_virginica_prob):
            print("true")
            print(countT)
            countT = countT + 1
        else:
            print("falus")
            print(countF)
            countF = countF + 1
        print(iris_setosa_setosa_prob)
        print(iris_setosa_versicolor_prob)
        print(iris_setosa_virginica_prob)
    
    #使用versicolor验证集验证
    for j in range(0,10):
        iris_versicolor_setosa_prob = calculateProb(iris_versicolor_text[j][0],iris_setosa_train_mean[0],iris_setosa_train_var[0])\
        *calculateProb(iris_versicolor_text[j][1],iris_setosa_train_mean[1],iris_setosa_train_var[1])\
        *calculateProb(iris_versicolor_text[j][2],iris_setosa_train_mean[2],iris_setosa_train_var[2])\
        *calculateProb(iris_versicolor_text[j][3],iris_setosa_train_mean[3],iris_setosa_train_var[3])
        
        iris_versicolor_versicolor_prob = calculateProb(iris_versicolor_text[j][0],iris_versicolor_train_mean[0],iris_versicolor_train_var[0])\
        *calculateProb(iris_versicolor_text[j][1],iris_versicolor_train_mean[1],iris_versicolor_train_var[1])\
        *calculateProb(iris_versicolor_text[j][2],iris_versicolor_train_mean[2],iris_versicolor_train_var[2])\
        *calculateProb(iris_versicolor_text[j][3],iris_versicolor_train_mean[3],iris_versicolor_train_var[3])
        
        iris_versicolor_virginica_prob = calculateProb(iris_versicolor_text[j][0],iris_virginica_train_mean[0],iris_virginica_train_var[0])\
        *calculateProb(iris_versicolor_text[j][1],iris_virginica_train_mean[1],iris_virginica_train_var[1])\
        *calculateProb(iris_versicolor_text[j][2],iris_virginica_train_mean[2],iris_virginica_train_var[2])\
        *calculateProb(iris_versicolor_text[j][3],iris_virginica_train_mean[3],iris_virginica_train_var[3])
        
        
        if (iris_versicolor_versicolor_prob>iris_versicolor_setosa_prob and iris_versicolor_versicolor_prob>iris_versicolor_virginica_prob):
            print("true")
            print(countT)
            countT = countT + 1
        else:
            print("falus")
            print(countF)
            countF = countF + 1
        print(iris_setosa_setosa_prob)
        print(iris_setosa_versicolor_prob)
        print(iris_setosa_virginica_prob)
        
    #使用virginica验证集验证
    for j in range(0,10):
        iris_virginica_setosa_prob = calculateProb(iris_virginica_text[j][0],iris_setosa_train_mean[0],iris_setosa_train_var[0])\
        *calculateProb(iris_virginica_text[j][1],iris_setosa_train_mean[1],iris_setosa_train_var[1])\
        *calculateProb(iris_virginica_text[j][2],iris_setosa_train_mean[2],iris_setosa_train_var[2])\
        *calculateProb(iris_virginica_text[j][3],iris_setosa_train_mean[3],iris_setosa_train_var[3])
        
        iris_virginica_versicolor_prob = calculateProb(iris_virginica_text[j][0],iris_versicolor_train_mean[0],iris_versicolor_train_var[0])\
        *calculateProb(iris_virginica_text[j][1],iris_versicolor_train_mean[1],iris_versicolor_train_var[1])\
        *calculateProb(iris_virginica_text[j][2],iris_versicolor_train_mean[2],iris_versicolor_train_var[2])\
        *calculateProb(iris_virginica_text[j][3],iris_versicolor_train_mean[3],iris_versicolor_train_var[3])
        
        iris_virginica_virginica_prob = calculateProb(iris_virginica_text[j][0],iris_virginica_train_mean[0],iris_virginica_train_var[0])\
        *calculateProb(iris_virginica_text[j][1],iris_virginica_train_mean[1],iris_virginica_train_var[1])\
        *calculateProb(iris_virginica_text[j][2],iris_virginica_train_mean[2],iris_virginica_train_var[2])\
        *calculateProb(iris_virginica_text[j][3],iris_virginica_train_mean[3],iris_virginica_train_var[3])
        
        if (iris_virginica_virginica_prob>iris_virginica_setosa_prob and iris_virginica_virginica_prob>iris_virginica_versicolor_prob):
            print("true")
            print(countT)
            countT = countT + 1
        else:
            print("falus")
            print(countF)
            countF = countF + 1
        print(iris_setosa_setosa_prob)
        print(iris_setosa_versicolor_prob)
        print(iris_setosa_virginica_prob)
        
print("Accuracy为:",countT/(countT+countF),"%")

结果图片

结果

Accuracy为95.39%

我实在不想可视化了,太难了

posted @ 2020-04-01 21:00  egoistor  阅读(313)  评论(0编辑  收藏  举报