2025年1月5日
摘要: 8.矩阵的逆 8.1 相关性质 性质1:若矩阵A可逆,则\(A^{-1}\)也可逆: \[(A^{-1})^{-1}=A \] 性质1的证明:\(A \cdot A^{-1}=E\) 性质2:若矩阵A可逆,则\(\lambda \cdot A\)也可逆: \[(\lambda \cdot A)^{- 阅读全文
posted @ 2025-01-05 20:16 nafe 阅读(8) 评论(0) 推荐(0) 编辑
摘要: 7.矩阵的逆-定义和定理 7.1 逆矩阵的定义 对于n阶矩阵A,存在一个n阶矩阵B,使: \[AB=BA=E \]则称矩阵A是可逆的。 且B是A的逆矩阵,简称“逆阵”,记为: \[B=A^{-1} \]7.2 对逆矩阵的理解 若存在矩阵\(A_{n×n}\)、\(X_{n×1}\)、\(Y_{n×1 阅读全文
posted @ 2025-01-05 17:46 nafe 阅读(26) 评论(0) 推荐(0) 编辑