微积分笔记02:多元函数泰勒的泰勒展开式&海森矩阵
微积分笔记02:多元函数的泰勒展开式&海森矩阵
2.1 二元函数的n阶泰勒展开式
设二维坐标系中存在点\((x_0,y_0)\)及其邻域内的某个点\((x_0+\Delta x,y_0+\Delta y)\)
设存在函数\(z=f(x,y)\),且\(f(x,y)\)在点\((x_0,y_0)\)的某一邻域内有(n+1)阶连续偏导数
则由n阶泰勒展开式,有:
\[\qquad\qquad\qquad f(x_0+\Delta x,y_0+\Delta y)
\]
\[=f(x_0,y_0)
\]
\[\qquad\qquad\qquad\qquad\qquad\qquad+\Delta x \cdot f'_x(x_0,y_0)+\Delta y\cdot f'_y(x_0,y_0)
\]
\[\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad+\frac{1}{2!}\cdot[(\Delta x)^2 \cdot f''_{xx}(x_0,y_0)+(\Delta y)^2 \cdot f''_{yy}(x_0,y_0)+2\Delta_x\Delta_y\cdot f''_{xy}(x_0,y_0)]
\]
\[+...
\]
\[\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad+\frac{1}{n!}\cdot \sum_{i=0}^n C_n^i (\Delta x)^i\cdot(\Delta y)^{n-i} \cdot \frac{\alpha^n f}{\alpha^i x\cdot \alpha^{n-i}y} \Big|_{(x=x_0,y=y_0)}
\]
\[\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad+\frac{1}{(n+1)!}\cdot \sum_{i=0}^{n+1} C_n^i (\Delta x)^i\cdot(\Delta y)^{n+1-i} \cdot \frac{\alpha^{n+1} f}{\alpha^i x\cdot \alpha^{n+1-i}y} \Big|_{(x=x_0+\theta \cdot \Delta x,y=y_0+\theta \cdot \Delta y)}
\]
2.2 多元函数的二阶泰勒展开式及海森矩阵
2.2.1 二元函数的二阶泰勒展开式(矩阵)
一般情况下,可直接使用多元函数的二阶泰勒展开式进行求解,由2.1.1中的n阶泰勒展开式可得:
\[\qquad \qquad \qquad f(x_0+\Delta x,y_0+\Delta y)
\]
\[=f(x_0,y_0)
\]
\[\qquad\qquad\qquad\qquad\qquad\qquad+f'_x(x_0,y_0)\cdot \Delta x+f'_y(x_0,y_0)\cdot\Delta y
\]
\[\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad+f''_{xx}(x_0,y_0)\cdot (\Delta x)^2+f''_{yy}(x_0,y_0)\cdot (\Delta y)^2+2f''_{xy}(x_0,y_0)\cdot \Delta x \Delta y
\]
由梯度相关性质可得:
\[\nabla f(x_0,y_0)=
\begin{bmatrix}
f'_x(x_0,y_0)\\
f'_y(x_0,y_0)
\end{bmatrix}
\]
则上式可用矩阵表示为:
\[\qquad\qquad\qquad f(x_0+\Delta x,y_0+\Delta y)
\]
\[=f(x_0,y_0)
\]
\[\qquad\qquad\qquad
+
\nabla f^T(x_0,y_0)
\cdot
\begin{bmatrix}
\Delta x\\
\Delta y
\end{bmatrix}
\]
\[\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad
+
\begin{bmatrix}
\Delta x & \Delta y
\end{bmatrix}
\cdot
\begin{bmatrix}
f''_{xx}(x_0,y_0)&f''_{xy}(x_0,y_0)\\
f''_{xy}(x_0,y_0)&f''_{yy}(x_0,y_0)
\end{bmatrix}
\cdot
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix}
\]
2.2.2 多元元函数的二阶泰勒展开式(矩阵)
设存在多元函数\(f(x_1,x_2,...,x_n)\),若此函数满足泰勒展开式相关条件,则其二阶泰勒展开式为:
\[f(x_1+\Delta x_1,x_2+\Delta x_2,...,x_n+\Delta x_n)
\]
\[=f(x_1,x_2,...,x_n)
\]
\[+\nabla f^T(x_1,x_2...,x_n)
\cdot
\begin{bmatrix}
\Delta x_1\\
\Delta x_2\\
...\\
\Delta x_n
\end{bmatrix}
\]
\[+
\begin{bmatrix}
\Delta x_1 & \Delta x_2 & ...& \Delta x_n
\end{bmatrix}
\cdot
\begin{bmatrix}
f''_{x1x1}(x_0,y_0)&f''_{x1x2}(x_0,y_0)&...&f''_{x1xn}(x_0,y_0)\\
f''_{x2x1}(x_0,y_0)&f''_{x2x2}(x_0,y_0)&...&f''_{x2xn}(x_0,y_0)\\
&......\\
f''_{xnx1}(x_0,y_0)&f''_{xnx2}(x_0,y_0)&...&f''_{xnxn}(x_0,y_0)
\end{bmatrix}
\cdot
\begin{bmatrix}
\Delta x_1\\
\Delta x_2\\
...\\
\Delta x_n\\
\end{bmatrix}
\]
\[其中,矩阵
\begin{bmatrix}
f''_{x1x1}(x_0,y_0)&f''_{x1x2}(x_0,y_0)&...&f''_{x1xn}(x_0,y_0)\\
f''_{x2x1}(x_0,y_0)&f''_{x2x2}(x_0,y_0)&...&f''_{x2xn}(x_0,y_0)\\
&......\\
f''_{xnx1}(x_0,y_0)&f''_{xnx2}(x_0,y_0)&...&f''_{xnxn}(x_0,y_0)
\end{bmatrix}
称为海森矩阵,记为H
\]
则有:
\[f(x_1+\Delta x_1,x_2+\Delta x_2,...,x_n+\Delta x_n)
\]
\[=f(x_1,x_2,...,x_n)
\]
\[+\nabla f^T(x_1,x_2...,x_n)
\cdot
\begin{bmatrix}
\Delta x_1\\
\Delta x_2\\
...\\
\Delta x_n
\end{bmatrix}
\]
\[+
\begin{bmatrix}
\Delta x_1 & \Delta x_2 & ...& \Delta x_n
\end{bmatrix}
\cdot
H
\cdot
\begin{bmatrix}
\Delta x_1\\
\Delta x_2\\
...\\
\Delta x_n\\
\end{bmatrix}
\]