5.矩阵的行列式-相关性质
若存在行列式:
\[|A|=
\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nn}\\
\end{vmatrix}
\]
则\(|A|\)具有以下性质:
5.1 性质1:\(|A|^T=|A|\)
性质1的证明:
由矩阵转置相关性质可知:
\[(a_{ij})^T=a(_{ji})\\
\]
而:
\[|A|=\sum (-1)^ta_{1p_1}\cdot a_{2p_2}\cdot a_{3p_3}...\cdot a_{np_n}\\
|A|^T=\sum (-1)^ta_{p_11}\cdot a_{p_22}\cdot a_{p_33}\cdot ... a_{p_nn}
\]
故:
\[\tag{1}|A|^T=|A|
\]
5.2 性质2:将行列式任意两行(或两列)进行互换,行列式变号
性质2的证明:
若\(|A|=\sum (-1)^ta_{1p_1}\cdot a_{2p_2}\cdot a_{3p_3}...a_{jp_j}...a_{kp_k}...\cdot a_{np_n}\)
设将|A|中第\(j\)行和第\(k\)行进行互换形成的行列式为\(|A^{kj}|\):
相对\(|A|\)而言,\(|A^{kj}|\)中的全排列变为:\(p_1p_2p_3...p_k...p_j...p_n\),即产生(或减少)了1个逆序数:
\[\\
\Rightarrow |A^{kj}|=\sum (-1)^{t\pm1}a_{1p_1}\cdot a_{2p_2}\cdot a_{3p_3}...a_{kp_k}...a_{jp_j}...\cdot a_{np_n}\\
\]
\[\Rightarrow\tag{2} |A^{kj}|=-|A|
\]
5.3 性质3:若行列式任意两行的值完全相同,则行列式的值为0
性质3的证明:
根据性质2可知:\(|A^{kj}|=-|A|\)
若\(|A|\)中\(k,j\)两行的值完全相同,则:
\[|A^{kj}|=|A|\\
\Rightarrow |A| =-|A|
\]
\[\Rightarrow\tag{3} |A| = 0
\]
5.4 性质4:\(\lambda \cdot |A|=\lambda\) 乘以 \(|A|\)中任意一行(或任意一列)的元素
性质4的证明:
由\(|A|=\sum (-1)^ta_{1p_1}\cdot a_{2p_2}\cdot a_{3p_3}...\cdot a_{np_n}\)可知:
\[\lambda \cdot |A|=\sum (-1)^t \cdot \lambda \cdot a_{1p_1}\cdot a_{2p_2}\cdot a_{3p_3}...\cdot a_{np_n}
\]
由性质1可知:\(|A|=|A|^T\)
\[\Rightarrow \lambda \cdot |A|=\lambda \cdot |A|^T=\sum (-1)^ta_{p_11}\cdot a_{p_22}\cdot a_{p_33}\cdot ... a_{p_nn}
\]
又知\(p_1p_2p_3......p_n\) 是|A|中的全排列,故\(a_{ip_i}\)表示第i行任一元素,\(a_{p_ii}\)表示第i列任一元素(i=1,2,3...,n),则:
\[\lambda \cdot |A|=\sum (-1)^t \cdot (\lambda \cdot a_{1p_1})\cdot a_{2p_2}\cdot a_{3p_3}...\cdot a_{np_n}\\
\qquad\quad=\sum (-1)^t \cdot a_{1p_1}\cdot a_{2p_2}\cdot a_{3p_3}...\cdot (\lambda \cdot a_{np_n})\\
\]
\[\qquad\quad\quad\quad=\lambda \cdot |A|^T=\sum (-1)^t(\lambda \cdot a_{p_11})\cdot a_{p_22}\cdot a_{p_33}\cdot ... a_{p_nn}\\
\qquad\quad\quad\quad......\\
\qquad\quad\quad\quad=\lambda \cdot |A|^T=\sum (-1)^ta_{p_11}\cdot a_{p_22}\cdot a_{p_33}\cdot ... (\lambda \cdot a_{p_nn})\\
\qquad\quad\quad\quad......
\]
\[\Rightarrow \lambda \cdot |A|=
\begin{vmatrix}
\lambda \cdot a_{11} & \lambda \cdot a_{12} & \lambda \cdot a_{13} &...& \lambda \cdot a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nn}\\
\end{vmatrix}\\
\]
\[\tag{4}\qquad\qquad=
\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
\lambda \cdot a_{n1} & \lambda \cdot a_{n2} & \lambda \cdot a_{n3} &...& \lambda \cdot a_{nn}\\
\end{vmatrix}
\]
\[=\lambda \cdot|A|^T=
\begin{vmatrix}
\lambda \cdot a_{11} & a_{12} & a_{13} &...& a_{1n}\\
\lambda \cdot a_{21} & a_{22} & a_{23} &...& a_{2n}\\
\lambda \cdot a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
\lambda \cdot a_{n1} & a_{n2} & a_{n3} &...& a_{nn}\\
\end{vmatrix}\\
\]
\[......
\]
\[\tag{5}
\qquad\qquad
=
\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& \lambda \cdot a_{1n}\\
a_{21} & a_{22} & a_{23} &...& \lambda \cdot a_{2n}\\
a_{31} & a_{32} & a_{33} &...& \lambda \cdot a_{3n}\\
& & ......\\
a_{n1} & a_{n2} & a_{n3} &...& \lambda \cdot a_{nn}\\
\end{vmatrix}
\]
5.5 性质5:若行列式任意两行(或两列)元素成比例,则行列值为0
设\(|A|\)存在第\(x\)行:
\[|A|=
\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
a_{x1} & a_{x2} & a_{x3} &...& a_{xn}\\
& & ......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nn}\\
\end{vmatrix}\\
\]
若\(|A|\)中满足:\(a_{1i}=\lambda \cdot a_{xi}(i=1,2,3,...,n)\),则\(|A|\)可写为如下形式:
\[|A|=
\begin{vmatrix}
\lambda \cdot a_{x1} & \lambda \cdot a_{x2} & \lambda \cdot a_{x3} &...& \lambda \cdot a_{xn}\\
a_{21} & a_{22} & a_{23} &...& a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
a_{x1} & a_{x2} & a_{x3} &...& a_{xn}\\
& & ......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nn}\\
\end{vmatrix}\\
\]
\[=\lambda \cdot
\begin{vmatrix}
a_{x1} & a_{x2} & a_{x3} &...& a_{xn}\\
a_{21} & a_{22} & a_{23} &...& a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
a_{x1} & a_{x2} & a_{x3} &...& a_{xn}\\
& & ......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nn}\\
\end{vmatrix}
\]
则根据性质4,可得:
\[\lambda \cdot
\begin{vmatrix}
a_{x1} & a_{x2} & a_{x3} &...& a_{xn}\\
a_{21} & a_{22} & a_{23} &...& a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
a_{x1} & a_{x2} & a_{x3} &...& a_{xn}\\
& & ......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nn}\\
\end{vmatrix}=\lambda \cdot0=0 \qquad \qquad \qquad(6)
\\
\]
5.6 性质6:行列式的两行(或两列)相加
设\(|A|\)存在第\(z\)行:
\[|A|=
\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
a_{z1} & a_{z2} & a_{z3} &...& a_{zn}\\
& & ......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nn}\\
\end{vmatrix}\\
\]
若第z行元素均满足:\(a_{z_i}=a_{x_i}+a_{y_i}\;(i=1,2,3,...,n)\)
则:
\[|A|=\sum(-1)^ta_{1p_1} \cdot a_{2p_2} \cdot ... \cdot a_{zp_z}\cdot ... \cdot a_{np_n}\\
\qquad \qquad \quad=\sum(-1)^ta_{1p_1} \cdot a_{2p_2} \cdot ... \cdot (a_{xp_x}+a_{yp_y})\cdot ... \cdot a_{np_n}\\
\qquad \qquad \quad=\sum(-1)^ta_{1p_1} \cdot a_{2p_2} \cdot ... \cdot a_{xp_x}\cdot ... \cdot a_{np_n}+\sum(-1)^ta_{1p_1} \cdot a_{2p_2} \cdot ... \cdot a_{yp_y}\cdot ... \cdot a_{np_n}\\
\]
则\(|A|\)可具有以下性质:
\[|A|=
\tag{7}
\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
a_{z1} & a_{z2} & a_{z3} &...& a_{zn}\\
& & ......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nn}\\
\end{vmatrix}\\
=\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
a_{x1} & a_{x2} & a_{x3} &...& a_{xn}\\
& & ......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nn}\\
\end{vmatrix}
+\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3n}\\
& & ......\\
a_{y1} & a_{y2} & a_{y3} &...& a_{yn}\\
& & ......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nn}\\
\end{vmatrix}
\]
同理,可通过性质1证得以下性质(过程略):
\[\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1z} & ... & a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2z} & ... & a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3z} & ... & a_{3n}\\
& & &......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nz} & ... & a_{nn}\\
\end{vmatrix}\\
=\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1x} & ... & a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2x} & ... & a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3x} & ... & a_{3n}\\
& & &......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nx} & ... & a_{nn}\\
\end{vmatrix}
+\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1y} & ... & a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2y} & ... & a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3y} & ... & a_{3n}\\
& & &......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{ny} & ... & a_{nn}\\
\end{vmatrix}
\]
5.6.1 性质6推论:使行列式中两行(或两列)相加,但保持行列式值不变的方法:
设行列式|A|中存在第x列、第y列:
\[|A|=
\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1x} & ... & a_{1y} & ... & a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2x} & ... & a_{2y} & ... & a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3x} & ... & a_{3y} & ... & a_{3n}\\
& & &......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nx} & ... & a_{ny} & ... & a_{nn}\\
\end{vmatrix}
\]
若使第x列的数值产生以下变化,则|A|的值保持不变:
\[\tag {8}
由a_{ix}变为(a_{ix}+\lambda \cdot a_{iy})\quad(i=1,2,3,...,n)
\]
则新生成的行列式\(|A|'\)为:
\[|A|'=
\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& (a_{1x}+\lambda \cdot a_{1y}) & ... & a_{1y} & ... & a_{1n}\\
a_{21} & a_{22} & a_{23} &...& (a_{2x}+\lambda \cdot a_{2y}) & ... & a_{2y} & ... & a_{2n}\\
a_{31} & a_{32} & a_{33} &...& (a_{3x}+\lambda \cdot a_{3y}) & ... & a_{3y} & ... & a_{3n}\\
& & &......\\
a_{n1} & a_{n2} & a_{n3} &...& (a_{nx}+\lambda \cdot a_{ny}) & ... & a_{ny} & ... & a_{nn}\\
\end{vmatrix}
\]
根据性质6可得:
\[|A|'=
\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& a_{1x} & ... & a_{1y} & ... & a_{1n}\\
a_{21} & a_{22} & a_{23} &...& a_{2x} & ... & a_{2y} & ... & a_{2n}\\
a_{31} & a_{32} & a_{33} &...& a_{3x} & ... & a_{3y} & ... & a_{3n}\\
& & &......\\
a_{n1} & a_{n2} & a_{n3} &...& a_{nx} & ... & a_{ny} & ... & a_{nn}\\
\end{vmatrix}\\
+
\begin{vmatrix}
a_{11} & a_{12} & a_{13} &...& \lambda \cdot a_{1y} & ... & a_{1y} & ... & a_{1n}\\
a_{21} & a_{22} & a_{23} &...& \lambda \cdot a_{2y} & ... & a_{2y} & ... & a_{2n}\\
a_{31} & a_{32} & a_{33} &...& \lambda \cdot a_{3y} & ... & a_{3y} & ... & a_{3n}\\
& & &......\\
a_{n1} & a_{n2} & a_{n3} &...& \lambda \cdot a_{ny} & ... & a_{ny} & ... & a_{nn}\\
\end{vmatrix}
\]
\[\Rightarrow |A|'=|A|+0=|A|
\]
同理,设行列式|A|中存在第x行、第y行,若使x行产生以下变化,则|A|的值保持不变:
\[\tag{9}
由a_{xj}变为(a_{xi}+\lambda \cdot a_{yi})\quad(i=1,2,3,...,n)
\]
5.7 性质7:\(|A|\cdot |B|=|A\cdot B|\)
(证明过程参考后续知识点)