1.矩阵的基本概念&意义&特殊矩阵&基本运算

1.1 矩阵的定义:

矩阵是由\(m \times n\)个数排成的数表。

如以下矩阵:

\[X= \begin{bmatrix} x_{11} & x_{12} & x_{13} & ... & x_{1n}\\ x_{21} & x_{22} & x_{23} & ... & x_{2n}\\ x_{31} & x_{32} & x_{33} & ... & x_{3n}\\ &&......\\ x_{m1} & x_{m2} & x_{m3} & ... & x_{mn}\\ \end{bmatrix} \]

其中:

(1) \(X\)为矩阵名称,亦可记为\(X_{mn}\)

(2) \(x_{ij}(i=1,2,3,...,m;j=1,2,3,...,n)\)为矩阵X中的元素,简称元

(3)\(x_{ij}\)可称为X的(i,j)元;X矩阵亦可记为\((x_{ij})\)矩阵或\((x_{ij})_{mn}\)矩阵

1.2矩阵的意义

若存在变量\(x_i\),变量\(y_j\),系数\(a_{ij}\),其中(i=1,2,3,...,m),(j=1,2,3,...,n)

则可用矩阵表示\(x_i\)\(y_j\)的线性变换:

\[\begin{cases} y_1=a_{11}x_1+a_{12}x_2+a_{13}x_3+...+a_{1n}x_n\\ y_2=a_{21}x_1+a_{22}x_2+a_{23}x_3+...+a_{2n}x_n\\ y_3=a_{31}x_1+a_{32}x_2+a_{33}x_3+...+a_{3n}x_n\\ ......\\ y_m=a_{m1}x_1+a_{m2}x_2+a_{m3}x_3+...+a_{mn}x_n \end{cases} \]

1.3特殊矩阵

1.3.1 单位矩阵

若存在变量\(x_i\),变量\(y_j\),其中(i=1,2,3,...,m),(j=1,2,3,...,n),且\(x_i\)\(y_j\)的线性变换满足:

\[\begin{cases} y_1=x_1\\ y_2=x_2\\ y_3=x_3\\ ......\\ y_m=x_n\\ \end{cases} \]

则称\(x_i\)\(y_j\)的变换为\(恒等变换\),对应的矩阵称为\(单位矩阵\),用字母\(E\)或字母\(I\)表示:

\[E= \begin{bmatrix} 1 &0&...&0 &0 &0 \\ 0 &1 & 0 &...&0 &0\\ 0 & 0 & 1 &0 &... &0\\ & & &......\\ 0 & 0 & 0 &... &1 &0\\ 0 & 0 & 0 &... &0 &1 \end{bmatrix}\\ \]

1.3.2 对角矩阵

若存在变量\(x_i\),变量\(y_j\),其中(i=j=1,2,3,...,n),且\(x_i\)\(y_j\)的线性变换满足:

\[\begin{cases} y_1=\lambda_1 x_1\\ y_2=\lambda_2 x_2\\ y_3=\lambda_3 x_3\\ ......\\ y_n=\lambda_n x_n\\ \end{cases} \]

则对应的矩阵称为\(对角矩阵\),可用任意大写字母表示:

\[A= \begin{bmatrix} \lambda_1 &0&...&0 &0 &0 \\ 0 &\lambda_2 & 0 &...&0 &0\\ 0 & 0 & \lambda_3 &0 &... &0\\ & & &......\\ 0 & 0 & 0 &... &0 &\lambda_n \end{bmatrix}\\ \]

1.4矩阵的基本运算

设存在以下矩阵:

\[X_{mn}= \begin{bmatrix} x_{11} & x_{12} & x_{13} & ... & x_{1n}\\ x_{21} & x_{22} & x_{23} & ... & x_{2n}\\ x_{31} & x_{32} & x_{33} & ... & x_{3n}\\ &&......\\ x_{m1} & x_{m2} & x_{m3} & ... & x_{mn}\\ \end{bmatrix} \]

\[Y_{nm}= \begin{bmatrix} y_{11} & y_{12} & y_{13} & ... & y_{1m}\\ y_{21} & y_{22} & y_{23} & ... & y_{2m}\\ y_{31} & y_{32} & y_{33} & ... & y_{3m}\\ &&......\\ y_{n1} & y_{n2} & y_{n3} & ... & y_{nm}\\ \end{bmatrix} \]

1.4.1 矩阵的加法运算

  • 根据已知的X、Y矩阵,若m=n,可得:

\[X+Y= \begin{bmatrix} x_{11}+y_{11} & x_{12}+y_{12} & x_{13}+y_{13} & ... & x_{1n}+y_{1n}\\ x_{21}+y_{21} & x_{22}+y_{22} & x_{23}+y_{23} & ... & x_{2n}+y_{2n}\\ x_{31}+y_{31} & x_{32}+y_{32} & x_{33}+y_{33} & ... & x_{3n}+y_{3n}\\ &&......\\ x_{m1}+y_{m1} & x_{m2}+y_{m2} & x_{m3}+y_{m3} & ... & x_{mn}+y_{mn}\\ \end{bmatrix} \]

  • 矩阵的加法运算律:

\[\tag{1}X+Y=Y+X \]

\[\tag{2}(X+Y)+Z=X+(Y+Z) \]

1.4.2 矩阵的乘法运算

  • 根据已知的X矩阵,数$\lambda $与矩阵X相乘可得:

\[\lambda X= \begin{bmatrix} \lambda x_{11} & \lambda x_{12} & \lambda x_{13} & ... & \lambda x_{1n}\\ \lambda x_{21} & \lambda x_{22} & \lambda x_{23} & ... & \lambda x_{2n}\\ \lambda x_{31} & \lambda x_{32} & \lambda x_{33} & ... & \lambda x_{3n}\\ &&......\\ \lambda x_{m1} & \lambda x_{m2} & \lambda x_{m3} & ... & \lambda x_{mn}\\ \end{bmatrix} \]

  • 根据已知的X矩阵、Y矩阵相乘可得:

\[X_{mn} \cdot Y_{nm}=Z_{mm} \begin{bmatrix} z_{11} &z_{12} &z_{13} ... &z_{1m}\\ z_{21} &z_{22} &z_{23} ... &z_{2m} \\ ...\\ z_{m1} &z_{n2} &z_{n3} ... &z_{mm}\\ \end{bmatrix} \]

\[其中:\\ z_{ij}=\sum_{k=1}^nx_{ik}\cdot y_{kj} \]

  • 矩阵的乘法运算律

\[\tag{1} (\lambda \mu) A=\lambda (\mu A) \]

\[ \tag{2}(\lambda+\mu) A=\lambda A + \mu A \]

\[\tag{3}\lambda (A+B)=\lambda A+\lambda B ;\lambda (AB)=(\lambda A)B=A(\lambda B) \]

\[\tag{4}(AB)C=A(BC) \]

\[\]

\[\tag{5}A(B+C)=AB+AC;(B+C)A=BA+CA \]

posted on 2024-12-27 14:21  nafe  阅读(47)  评论(0编辑  收藏  举报