1.矩阵的基本概念&意义&特殊矩阵&基本运算
1.1 矩阵的定义:
矩阵是由\(m \times n\)个数排成的数表。
如以下矩阵:
\[X=
\begin{bmatrix}
x_{11} & x_{12} & x_{13} & ... & x_{1n}\\
x_{21} & x_{22} & x_{23} & ... & x_{2n}\\
x_{31} & x_{32} & x_{33} & ... & x_{3n}\\
&&......\\
x_{m1} & x_{m2} & x_{m3} & ... & x_{mn}\\
\end{bmatrix}
\]
其中:
(1) \(X\)为矩阵名称,亦可记为\(X_{mn}\)
(2) \(x_{ij}(i=1,2,3,...,m;j=1,2,3,...,n)\)为矩阵X中的元素,简称元
(3)\(x_{ij}\)可称为X的(i,j)元;X矩阵亦可记为\((x_{ij})\)矩阵或\((x_{ij})_{mn}\)矩阵
1.2矩阵的意义
若存在变量\(x_i\),变量\(y_j\),系数\(a_{ij}\),其中(i=1,2,3,...,m),(j=1,2,3,...,n)
则可用矩阵表示\(x_i\)到\(y_j\)的线性变换:
\[\begin{cases}
y_1=a_{11}x_1+a_{12}x_2+a_{13}x_3+...+a_{1n}x_n\\
y_2=a_{21}x_1+a_{22}x_2+a_{23}x_3+...+a_{2n}x_n\\
y_3=a_{31}x_1+a_{32}x_2+a_{33}x_3+...+a_{3n}x_n\\
......\\
y_m=a_{m1}x_1+a_{m2}x_2+a_{m3}x_3+...+a_{mn}x_n
\end{cases}
\]
1.3特殊矩阵
1.3.1 单位矩阵
若存在变量\(x_i\),变量\(y_j\),其中(i=1,2,3,...,m),(j=1,2,3,...,n),且\(x_i\)到\(y_j\)的线性变换满足:
\[\begin{cases}
y_1=x_1\\
y_2=x_2\\
y_3=x_3\\
......\\
y_m=x_n\\
\end{cases}
\]
则称\(x_i\)到\(y_j\)的变换为\(恒等变换\),对应的矩阵称为\(单位矩阵\),用字母\(E\)或字母\(I\)表示:
\[E=
\begin{bmatrix}
1 &0&...&0 &0 &0 \\
0 &1 & 0 &...&0 &0\\
0 & 0 & 1 &0 &... &0\\
& & &......\\
0 & 0 & 0 &... &1 &0\\
0 & 0 & 0 &... &0 &1
\end{bmatrix}\\
\]
1.3.2 对角矩阵
若存在变量\(x_i\),变量\(y_j\),其中(i=j=1,2,3,...,n),且\(x_i\)到\(y_j\)的线性变换满足:
\[\begin{cases}
y_1=\lambda_1 x_1\\
y_2=\lambda_2 x_2\\
y_3=\lambda_3 x_3\\
......\\
y_n=\lambda_n x_n\\
\end{cases}
\]
则对应的矩阵称为\(对角矩阵\),可用任意大写字母表示:
\[A=
\begin{bmatrix}
\lambda_1 &0&...&0 &0 &0 \\
0 &\lambda_2 & 0 &...&0 &0\\
0 & 0 & \lambda_3 &0 &... &0\\
& & &......\\
0 & 0 & 0 &... &0 &\lambda_n
\end{bmatrix}\\
\]
1.4矩阵的基本运算
设存在以下矩阵:
\[X_{mn}=
\begin{bmatrix}
x_{11} & x_{12} & x_{13} & ... & x_{1n}\\
x_{21} & x_{22} & x_{23} & ... & x_{2n}\\
x_{31} & x_{32} & x_{33} & ... & x_{3n}\\
&&......\\
x_{m1} & x_{m2} & x_{m3} & ... & x_{mn}\\
\end{bmatrix}
\]
\[Y_{nm}=
\begin{bmatrix}
y_{11} & y_{12} & y_{13} & ... & y_{1m}\\
y_{21} & y_{22} & y_{23} & ... & y_{2m}\\
y_{31} & y_{32} & y_{33} & ... & y_{3m}\\
&&......\\
y_{n1} & y_{n2} & y_{n3} & ... & y_{nm}\\
\end{bmatrix}
\]
1.4.1 矩阵的加法运算
- 根据已知的X、Y矩阵,若m=n,可得:
\[X+Y=
\begin{bmatrix}
x_{11}+y_{11} & x_{12}+y_{12} & x_{13}+y_{13} & ... & x_{1n}+y_{1n}\\
x_{21}+y_{21} & x_{22}+y_{22} & x_{23}+y_{23} & ... & x_{2n}+y_{2n}\\
x_{31}+y_{31} & x_{32}+y_{32} & x_{33}+y_{33} & ... & x_{3n}+y_{3n}\\
&&......\\
x_{m1}+y_{m1} & x_{m2}+y_{m2} & x_{m3}+y_{m3} & ... & x_{mn}+y_{mn}\\
\end{bmatrix}
\]
- 矩阵的加法运算律:
\[\tag{1}X+Y=Y+X
\]
\[\tag{2}(X+Y)+Z=X+(Y+Z)
\]
1.4.2 矩阵的乘法运算
- 根据已知的X矩阵,数$\lambda $与矩阵X相乘可得:
\[\lambda X=
\begin{bmatrix}
\lambda x_{11} & \lambda x_{12} & \lambda x_{13} & ... & \lambda x_{1n}\\
\lambda x_{21} & \lambda x_{22} & \lambda x_{23} & ... & \lambda x_{2n}\\
\lambda x_{31} & \lambda x_{32} & \lambda x_{33} & ... & \lambda x_{3n}\\
&&......\\
\lambda x_{m1} & \lambda x_{m2} & \lambda x_{m3} & ... & \lambda x_{mn}\\
\end{bmatrix}
\]
- 根据已知的X矩阵、Y矩阵相乘可得:
\[X_{mn} \cdot Y_{nm}=Z_{mm}
\begin{bmatrix}
z_{11} &z_{12} &z_{13} ... &z_{1m}\\
z_{21} &z_{22} &z_{23} ... &z_{2m} \\
...\\
z_{m1} &z_{n2} &z_{n3} ... &z_{mm}\\
\end{bmatrix}
\]
\[其中:\\
z_{ij}=\sum_{k=1}^nx_{ik}\cdot y_{kj}
\]
- 矩阵的乘法运算律
\[\tag{1} (\lambda \mu) A=\lambda (\mu A)
\]
\[ \tag{2}(\lambda+\mu) A=\lambda A + \mu A
\]
\[\tag{3}\lambda (A+B)=\lambda A+\lambda B
;\lambda (AB)=(\lambda A)B=A(\lambda B)
\]
\[\tag{4}(AB)C=A(BC)
\]
\[\]
\[\tag{5}A(B+C)=AB+AC;(B+C)A=BA+CA
\]