Number Sequence(kmp算法)
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
InputThe first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
OutputFor each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<set> #include<vector> #include<stack> #include<queue> #include<algorithm> #include<cstdio> #include<algorithm> #include<functional> #include<sstream> using namespace std; const double g = 10.0, eps = 1e-9; const int N = 1000000 + 5, maxn = 10000 + 5, inf = 0x3f3f3f3f; int ext[N], str[maxn], ptr[N]; void getnext(int slen) { ext[0] = -1; int k = -1; for (int i = 1; i <= slen - 1; i++) { while (k>-1 && str[k + 1] != str[i])k = ext[k]; if (str[k + 1] == str[i])k++; ext[i] = k; } } int kmp(int plen, int slen) { int k = -1; for (int i = 0; i <= plen - 1; i++) { while (k>-1 && str[k + 1] != ptr[i])k = ext[k]; if (str[k + 1] == ptr[i])k++; if (k == slen - 1)return i - slen + 2; } return -1; } int main() { ios::sync_with_stdio(false); cin.tie(0); // cout<<setiosflags(ios::fixed)<<setprecision(2); int t, n, m; cin >> t; while (t--) { cin >> n >> m; for (int i = 0; i<n; i++)cin >> ptr[i]; for (int i = 0; i<m; i++)cin >> str[i]; getnext(m); cout << kmp(n, m) << endl; } return 0; }