【抽象代数】 05 - 环和域
抽象代数不是为了抽象而抽象,它所研究的代数系统都有着广泛的实例原型。群论的学习中我们已经看到很多系统同时存在着两个运算,而且它们是相互关联的,这就迫使我们来研究这种代数系统的结构和特点。从另一方面看,运算之间的互相牵连也会导致单个运算的特殊性质,你将会在后面的讨论中看到这一点。
1. 环
1.1 环和子环
具有两个运算的系统比较多,性质也各有不同,我们必须先从中抽取出“最小”的系统才能有通用性。各种数系、多项式、矩阵的加法和乘法是最具代表性的双运算系统,以它们为参考可以得到比较有用的系统。矩阵(线性空间)为双运算系统提供了丰富的可能性,教材中的例子也避不开它,但你也只需知道一些基本概念就行,线性代数今后将作为专门的课题讨论。
考察上面提到的常见系统,它们的加法群都是交换群,故假设新的抽象系统的一个运算也为交换群。为方便起见可直接称其为加群,加群的单位元称为零元素(记作
以上系统的中的乘法群就比较弱了,但至少组合律是成立的,所以它是一个半群。如果我们定义的系统只有两个孤立的运算,也大可不必做这样的研究。研究常见的系统,可以发现乘法和加法满足以下分配律。至此我们就可以定义新的系统了,一个运算为加法群,另一个运算为半群,且它们满足分配率,这样的系统称为环(ring),一般用字母
如果你仔细观察分配率,可以发现其中有同态映射的影子,这其实也是还有着各种性质的主要原因。现在来看看加法在结合了乘法后,都有哪些性质,我们以前熟悉的表达式变形还能不能成立。首先对于特殊的
很自然地,可以定义子环,它是进一步研究环结构的基本定义。子环除了是加群的子群外,还需对乘法封闭,这些比较容易证明。和单运算系统一样,可以定义环同构,如果两个环
环中也可以对单位元和逆进行讨论,由于两个运算的相互作用,往往会表现出有趣的性质,但证明中也需要巧妙的构造。比如考察有单位元的环
• 每个元素都是幂等元
• 环
• 求证:唯一的左(右)单位元必定是单位元;(提示:构造
• 如果
• 求证:交换环中所有满足
1.2 零因子
零元素在环中有着特殊的地位,它如同黑洞一般讲所有元素吸入,使得环的局部呈现坍塌。反之,环的整体结构还是得靠那些能逃脱
显然有无左零因子和有无右零因子是等价的,这样的环也称为无零因子环,交换的无零因子环叫整环(domain)(有些教材还要求含单位元,这里不采用)。对无零因子环,若有
若对于无零因子环有左单位元
• 若
• 含有至少
• 若有限环中有
1.3 特征
阶是群的重要参数,现在来看看加法群中元素的阶,如果其中有最大值
环中的乘法运算有个很有用的性质,就是倍数可以任意移动组合(公式(5)),这个特征结合无零因子可以得到很好的性质。先假设环中有一个阶为
• 若交换环的特征为
• 求证:
2. 除环和域
2.1 除环和域
有些环在乘法上有更多的性质,有必要专门讨论它们。对于那些有单位元的环,其中存在逆元的元素一般称为单位(unit)。容易证明环中的全体单位在乘法下构成群,它被称为单位群。对于有限环,总有
除零因子外,每个元素都是单位的环称为除环或体(skew field),交换除环也叫域(field)。容易证明除环没有零因子,由此可知在去除零元素之后,乘法仍然是封闭的,它们能够形成一个群。数系是除环和域的典型代表,整数环有单位
• 若环
你可能有一个疑问,存不存在除环呢?乘法有单位元和逆元,却不可交换的环存在吗?还记得第一章里介绍的四元群吗,由它们作为“超复数”的单位形成四元数
Hamilton(1805 - 1865)
之前群的定义中,我们讨论了一次方程有解与群的等价性。在除环里也有类似的结论,而且所需条件更弱。首先除环中一次方程(7)都有解,反之若环中满足方程(7)其中之一有解,下面来看它是否是除环。首先要证无零因子,即对任意
2.2 商域
域的结构是最常见的,它的结论比较丰富,我们希望能把一个环放在域中,以便获得更多的结论。显然不是所有的环都可以扩展为域,它至少要满足无零因子和可交换。自然地我们想问,是不是该先考虑无零因子的不可交换环扩展为除环,可惜这个结论已经有人举出反例了,比较复杂,这里仅当结论。那么无零因子可交换环(整环)是不是都能扩展为域呢?这里就来讨论这个问题。
要想成为域,需要补充单位元和逆元,但硬要把它们定义出来还是很困难的。回顾一下我们在实数系统介绍的扩展方法,可以用数对来定义扩展的数系,再将原数系嵌入到新数系中。添加单位元和逆元本质上需要做除法,和整数扩展为有理数的过程完全一样,定义元素对的集合
相等关系下的等价类正是我们期望的系统,首先证明新系统的如下加法和乘法定义是良性的,即等价类中代表元的选取不影响结果。然后证明,新系统在这个运算定义下形成一个域,最后通过映射
3. 特殊环
3.1 循环环
循环群是最简单的群,那这里先分析一下加法群是循环群的环,它称为循环环,设加法群的生成元为
先来看循环环,它的所有元素是
对于无穷阶环,加法生成元只有
这样循环环的所有同构环就清楚了,每一个非负整数对应一个无穷环,每一个因子对应一个
现在做一些常规讨论,
3.2 多项式环
将环向多维空间扩展,是得到更多复杂环的常用方法,扩展的形式也是多种多样的。矩阵环可以得到非常丰富的环结构,简单一点的还有在线性空间的简单拓展,比如无理数环
线性扩展中最一般的当属多项式,多项式一直是代数中的重要概念,它是一个基本的代数对象,现在从环的角度来分析一下多项式系统。先从最常见的一元多项式说起,它是具有以下形式的表达式,其中
大家最初是在域的环境下认识多项式的,这里的限制要求重新定义对多项式的一般认识。首先多项式中的加号和
容易证明在环
整数环的分解性(算术基本定理)是初等数论的重要内容,在一般环中仍然可以进行这样的讨论,后面会给出专题。除了多项式环,还有一个重要的高斯整数,也是重要的环。多项式要扩展成域,必定引入有理分式域。
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步