Spring 如何解决构造器注入的循环依赖

image

Spring 循环依赖一般包含 构造器注入循环依赖 和字段注入(setter方式)循环依赖, 字段注入循环依赖,Spring 官方通过三层缓存解决。而今天分享的重点是:Spring 是如何解决构造器注入产生的循环依赖问题?

申明:本文源码 基于 springboot-2.7.0 、spring-5.3.20 和 JDK11
起因
前段时间,因部门同事遇到一个 Spring 循环依赖的问题,IDEA 错误信息如下:


APPLICATION FAILED TO START


Description:

The dependencies of some of the beans in the application context form a cycle:

┌─────┐
| orderService defined in file [./target/classes/cn/xxx/spring/OrderService.class]
↑ ↓
| userService defined in file [./target/classes/cn/xxx/spring/UserService.class]
└─────┘

Action:

Relying upon circular references is discouraged and they are prohibited by default. Update your application to remove the dependency cycle between beans. As a last resort, it may be possible to break the cycle automatically by setting spring.main.allow-circular-references to true.
​错误信息大体意思是:不鼓励依赖循环引用,默认情况下是禁止的。可以通过修改代码,删除 bean 之间的依赖循环。或者通过将 spring.main.allow-circular-references 设置为 true 来自动中断循环。

鉴于自己曾经也遇到过这个问题,因此把曾经整理的云笔记结合源码输出此文,希望帮助到同样遇坑的小伙伴。

什么是循环依赖
循环依赖是指:对象实例之间依赖关系构成一个环形,分为:单个对象的自我循环、两个对象的相互循环、多个对象的相互循坏。抽象图如下:
image

单个对象的自我依赖

@Component
public class OrderService {
    @Autowired
    private OrderService orderService;
}

这种循环产生的概率很低,自己依赖自己,一般是在代码编写错误的情况下出现,而且很容易发现。

两个对象的相互循环
从上文 OrderService 和 UserService 两个类的代码可以看出,在初始化 OrderService 类时,需要依赖 UserService,而 UserService 类未实例化,因此需要实例化 UserService 类,但是在初始化 UserService 类时 发现它又依赖 OrderService 类,因此就产生了循环依赖,依赖关系可以抽象成下图:

从上文 OrderService 和 UserService 两个类的代码可以看出,在初始化 OrderService 类时,需要依赖 UserService,而 UserService 类未实例化,因此需要实例化 UserService 类,但是在初始化 UserService 类时 发现它又依赖 OrderService 类,因此就产生了循环依赖,依赖关系可以抽象成下图:

@Component
public class OrderService {
    private final UserService userService;
    public OrderService(UserService userService){
        this.userService = userService;
    }

    public User getUser(){
        return userService.getUser();
    }
}

@Component
public class UserService {

  private final OrderService orderService;
  public UserService(OrderService orderService){
    this.orderService = orderService;
  }

  public Order getOrder(){
    return orderService.getOrder();
  }
}

多个对象的依赖成环:

@Component
public class OrderService {
  
    private final UserService userService;
  
    public OrderService(UserService userService){
        this.userService = userService;
    }

    public User getUser(){
        return userService.getUser();
    }
}

@Component
public class UserService {

  private final GoodsService goodsService;
  
  public UserService(GoodsService goodsService){
    this.goodsService = goodsService;
  }

  public Goods getGoodsService(){
    return goodsService.getGoods();
  }
}

@Component
public class GoodsService {

  private final OrderService orderService;
  
  public GoodsService(OrderService orderService){
    this.orderService = orderService;
  }

  public Order getOrder(){
    return orderService.getOrder();
  }
}

这种循环依赖比较隐蔽,多个对象依赖,最终成环。

如何解决循环依赖

  1. 修改代码
    既然循环依赖是代码编写带来的,最彻底的方案是把出现循环依赖的代码重构,但是,重构代码的范围可能不可控,因此,对于测试等存在一定的回归成本,这是一种代价稍微大点的方案。

不过,代码出现循环依赖,在一定意义上(不是绝对哦)预示了 code smell:为什么会存在循环依赖?代码抽象是否合理?代码设计是否违背了 SOLID 原则?

  1. 使用字段依赖注入
    曾经很长一段时间(Spring 3.0 以前的版本),字段依赖是比较主流的一种编程方式,因为这种方式编写方便简洁,而且 Spring 也利用三层缓存解决了循环依赖问题,但后面因 Spring 不推荐字段依赖注入方式,并且在 github上也可以发现大部分的开源软件也不采用这种方式了,所以该方案也仅供参考不推荐,改造代码如下:
@Component
public class OrderService {
    @Autowired
    private UserService userService;

    public User getUser(){
        return userService.getUser();
    }
}

@Component
public class UserService {
  @Autowired
  private OrderService orderService;

  public Order getOrder(){
    return orderService.getOrder();
  }
}
  1. 使用 @Lazy 注解
    @Lazy 是 spring 3.0 提供的一个注解,用来表示是否要延迟初始化 bean,首先看下 @Lazy 注解的源码:
/**
 * Indicates whether a bean is to be lazily initialized.
 *
 * <p>May be used on any class directly or indirectly annotated with {@link
 * org.springframework.stereotype.Component @Component} or on methods annotated with
 * {@link Bean @Bean}.
 *
 * <p>If this annotation is not present on a {@code @Component} or {@code @Bean} definition,
 * eager initialization will occur. If present and set to {@code true}, the {@code @Bean} or
 * {@code @Component} will not be initialized until referenced by another bean or explicitly
 * retrieved from the enclosing {@link org.springframework.beans.factory.BeanFactory
 * BeanFactory}. If present and set to {@code false}, the bean will be instantiated on
 * startup by bean factories that perform eager initialization of singletons.
 *
 * <p>If Lazy is present on a {@link Configuration @Configuration} class, this
 * indicates that all {@code @Bean} methods within that {@code @Configuration}
 * should be lazily initialized. If {@code @Lazy} is present and false on a {@code @Bean}
 * method within a {@code @Lazy}-annotated {@code @Configuration} class, this indicates
 * overriding the 'default lazy' behavior and that the bean should be eagerly initialized.
 *
 * <p>In addition to its role for component initialization, this annotation may also be placed
 * on injection points marked with {@link org.springframework.beans.factory.annotation.Autowired}
 * or {@link javax.inject.Inject}: In that context, it leads to the creation of a
 * lazy-resolution proxy for all affected dependencies, as an alternative to using
 * {@link org.springframework.beans.factory.ObjectFactory} or {@link javax.inject.Provider}.
 * Please note that such a lazy-resolution proxy will always be injected; if the target
 * dependency does not exist, you will only be able to find out through an exception on
 * invocation. As a consequence, such an injection point results in unintuitive behavior
 * for optional dependencies. For a programmatic equivalent, allowing for lazy references
 * with more sophistication, consider {@link org.springframework.beans.factory.ObjectProvider}.
 *
 * @author Chris Beams
 * @author Juergen Hoeller
 * @since 3.0
 * @see Primary
 * @see Bean
 * @see Configuration
 * @see org.springframework.stereotype.Component
 */
@Target({ElementType.TYPE, ElementType.METHOD, ElementType.CONSTRUCTOR, ElementType.PARAMETER, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface Lazy {

	/**
	 * Whether lazy initialization should occur.
	 */
	boolean value() default true;

}

从 @Lazy 注解的源码可以总结几点:

@Lazy 用来标识类是否需要延迟加载;
@Lazy 可以作用在类上、方法上、构造器上、方法参数上、成员变量中;
@Lazy 作用于类上时,通常与 @Component 及其衍生注解配合使用;
@Lazy 注解作用于方法上时,通常与 @Bean 注解配合使用;
因此,通过 @Lazy 解决构造器循环依赖的代码改造如下:

@Component
public class UserService {

  private final OrderService orderService;

  @Lazy
  public UserService(OrderService orderService){
    this.orderService = orderService;
  }
  // 或者
  public UserService(@Lazy OrderService orderService){
    this.orderService = orderService;
  }

  public Order getOrder(){
    return orderService.getOrder();
  }
}

@Lazy 原理剖析
本文使用的是 Springboot-2.7.0 启动,因此整体思路是:Springboot是如何启动 Spring IOC容器?如何加载 Bean?如何 处理 @Lazy注解?

源码查看足迹可以参考下面的类:

Springboot 启动类 main() 调用 org.springframework.boot.SpringApplication#run()
org.springframework.boot.SpringApplication#refreshContext()
org.springframework.context.support.AbstractApplicationContext#refresh()
org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#populateBean()
org.springframework.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor#postProcessProperties()
org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#createBean
org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#doCreateBean
org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#createBeanInstance
org.springframework.beans.factory.support.ConstructorResolver#autowireConstructor
org.springframework.beans.factory.support.ConstructorResolver#resolvePreparedArguments
org.springframework.beans.factory.support.ConstructorResolver#resolveAutowiredArgument
org.springframework.beans.factory.config.AutowireCapableBeanFactory#resolveDependency()

这里摘取了处理构造器依赖的几个核心方法来解释@Lazy 如何解决循环依赖

UserService构造器注入OrderService是强依赖关系,因此会经过AbstractAutowireCapableBeanFactory#createBeanInstance()中关于构造器逻辑代码:

// org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#createBeanInstance
class AbstractAutowireCapableBeanFactory{
    // Create a new instance for the specified bean, using an appropriate instantiation strategy: factory method, constructor autowiring, or simple instantiation.
    // 使用适当的实例化策略为指定的 bean 创建一个新实例:工厂方法、构造函数自动装配或简单实例化。
    protected BeanWrapper createBeanInstance(String beanName, RootBeanDefinition mbd, @Nullable Object[] args) {
      // Candidate constructors for autowiring?
      Constructor<?>[] ctors = determineConstructorsFromBeanPostProcessors(beanClass, beanName);
      if (ctors != null || mbd.getResolvedAutowireMode() == AUTOWIRE_CONSTRUCTOR ||
          mbd.hasConstructorArgumentValues() || !ObjectUtils.isEmpty(args)) {
        return autowireConstructor(beanName, mbd, ctors, args);
      }
		}
}

在 autowireConstructor(beanName, mbd, ctors, args) 方法会调用 ConstructorResolver#resolvePreparedArguments(),再进入ConstructorResolver#resolveAutowiredArgument(), 再进入DefaultListableBeanFactory#resolveDependency(), resolveDependency()方法的 getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary 逻辑就是针对Lazy情况进行处理: 判断构造器参数是有@Lazy注解,有则通过buildLazyResolutionProxy 生成代理对象,无则直接返回beanName。而在buildLazyResolutionProxy()里会生成 一个TargetSource对象来和代理对象相关联。部分源码如下:

// org.springframework.beans.factory.support.DefaultListableBeanFactory#resolveDependency
public class DefaultListableBeanFactory{
  public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
                                  @Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {

    // 此处省略部分代码
    if (Optional.class == descriptor.getDependencyType()) {
    } else {
       // 处理 Lazy 逻辑
      Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary(
        descriptor, requestingBeanName);
      if (result == null) {
        result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter);
      }
      return result;
    }
  }
}

// org.springframework.context.annotation.ContextAnnotationAutowireCandidateResolver#getLazyResolutionProxyIfNecessary
public class ContextAnnotationAutowireCandidateResolver extends QualifierAnnotationAutowireCandidateResolver {

    @Override
    @Nullable
    public Object getLazyResolutionProxyIfNecessary(DependencyDescriptor descriptor, @Nullable String beanName) {
        // 判断注解是否有@Lazy,有则通过buildLazyResolutionProxy 生成代理对象,没有则直接返回beanName
        return (isLazy(descriptor) ? buildLazyResolutionProxy(descriptor, beanName) : null);
    }

  protected boolean isLazy(DependencyDescriptor descriptor) {
    for (Annotation ann : descriptor.getAnnotations()) {
      Lazy lazy = AnnotationUtils.getAnnotation(ann, Lazy.class);
      if (lazy != null && lazy.value()) {
        return true;
      }
    }
    MethodParameter methodParam = descriptor.getMethodParameter();
    if (methodParam != null) {
      Method method = methodParam.getMethod();
      if (method == null || void.class == method.getReturnType()) {
        Lazy lazy = AnnotationUtils.getAnnotation(methodParam.getAnnotatedElement(), Lazy.class);
        if (lazy != null && lazy.value()) {
          return true;
        }
      }
    }
    return false;
  }
}

通过上面核心代码的解读,我们可以知道,构造器(参数)增加 @Lazy 注解后,Spring不会去初始化参数对应类的实例,而是返回它的一个代理对象,解决了循环依赖问题,逻辑可以抽象为下图:
image

尽管循环依赖的问题解决了,但是,UserService类 依赖的只是OrderService的一个代理对象。因此,我们自然会好奇:当调用orderService.getOrder()时,spring是如何找到 OrderService 的真实对象呢?

从上文知道,注入给UserService类的是一个代理,说起代理就不得不说起Spring AOP机制,它就是通过动态代理实现的(JDK动态代理 和 CGLib动态代理)。 因为OrderService并非接口,因此不能使用 JDK动态代理,只能通过 CGLib进行代理,CGLib源码如下:

// org.springframework.aop.framework.CglibAopProxy.DynamicAdvisedInterceptor#intercept
class CglibAopProxy implements AopProxy, Serializable {
    private static class DynamicAdvisedInterceptor implements MethodInterceptor, Serializable {
      public Object intercept(Object proxy, Method method, Object[] args, MethodProxy methodProxy) throws Throwable {
        Object oldProxy = null;
        boolean setProxyContext = false;
        Object target = null;
        TargetSource targetSource = this.advised.getTargetSource();
        try {
          if (this.advised.exposeProxy) {
            // Make invocation available if necessary.
            oldProxy = AopContext.setCurrentProxy(proxy);
            setProxyContext = true;
          }
          // Get as late as possible to minimize the time we "own" the target, in case it comes from a pool...
          // 获取被代理的对象
          target = targetSource.getTarget();
          Class<?> targetClass = (target != null ? target.getClass() : null);
          List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);
          Object retVal;
          // Check whether we only have one InvokerInterceptor: that is,
          // no real advice, but just reflective invocation of the target.
          if (chain.isEmpty() && CglibMethodInvocation.isMethodProxyCompatible(method)) {
            // We can skip creating a MethodInvocation: just invoke the target directly.
            // Note that the final invoker must be an InvokerInterceptor, so we know
            // it does nothing but a reflective operation on the target, and no hot
            // swapping or fancy proxying.
            Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);
            // 通过反射调用被代理对象的方法
            retVal = invokeMethod(target, method, argsToUse, methodProxy);
          }
          else {
            // We need to create a method invocation...
            retVal = new CglibMethodInvocation(proxy, target, method, args, targetClass, chain, methodProxy).proceed();
          }
          retVal = processReturnType(proxy, target, method, retVal);
          return retVal;
        }catch (Exception e){}
      }
    }
}

这里抽取了CGLib动态代理核心的3步:

// 此处的TargetSource 和 上文 buildLazyResolutionProxy() 构建的TargetSource 关联
1. TargetSource targetSource = this.advised.getTargetSource();

// 获取被代理的对象target
2. target = targetSource.getTarget();

// 反射调用被代理对象的方法
3. retVal = invokeMethod(target, method, argsToUse, methodProxy);

通过CGLib核心的3步解释了,Spring中代理类是如何与真实对象进行关联,因此,orderService关联到真实对象可以抽象成下图:
image

另外,我们通过3张 IDEA debugger 截图来佐证下:
image
image
image

总结
Spring构造器注入循环依赖有3种解决办法:重构代码、字段依赖注入、@Lazy注解。强烈推荐 @Lazy注解
@Lazy注解 解决思路是:初始化时注入代理对象,真实调用时使用Spring AOP动态代理去关联真实对象,然后通过反射完成调用。
@Lazy注解 加在构造器上,作用域为构造器所有参数,加在构造器某个参数上,作用域为该参数
@Lazy注解 作用在接口上,使用 JDK动态代理,作用在类上,使用 CGLib动态代理

posted @ 2023-03-27 11:42  edda_huang  阅读(1046)  评论(0编辑  收藏  举报