Spring 如何解决构造器注入的循环依赖
Spring 循环依赖一般包含 构造器注入循环依赖 和字段注入(setter方式)循环依赖, 字段注入循环依赖,Spring 官方通过三层缓存解决。而今天分享的重点是:Spring 是如何解决构造器注入产生的循环依赖问题?
申明:本文源码 基于 springboot-2.7.0 、spring-5.3.20 和 JDK11
起因
前段时间,因部门同事遇到一个 Spring 循环依赖的问题,IDEA 错误信息如下:
APPLICATION FAILED TO START
Description:
The dependencies of some of the beans in the application context form a cycle:
┌─────┐
| orderService defined in file [./target/classes/cn/xxx/spring/OrderService.class]
↑ ↓
| userService defined in file [./target/classes/cn/xxx/spring/UserService.class]
└─────┘
Action:
Relying upon circular references is discouraged and they are prohibited by default. Update your application to remove the dependency cycle between beans. As a last resort, it may be possible to break the cycle automatically by setting spring.main.allow-circular-references to true.
错误信息大体意思是:不鼓励依赖循环引用,默认情况下是禁止的。可以通过修改代码,删除 bean 之间的依赖循环。或者通过将 spring.main.allow-circular-references 设置为 true 来自动中断循环。
鉴于自己曾经也遇到过这个问题,因此把曾经整理的云笔记结合源码输出此文,希望帮助到同样遇坑的小伙伴。
什么是循环依赖
循环依赖是指:对象实例之间依赖关系构成一个环形,分为:单个对象的自我循环、两个对象的相互循环、多个对象的相互循坏。抽象图如下:
单个对象的自我依赖
@Component
public class OrderService {
@Autowired
private OrderService orderService;
}
这种循环产生的概率很低,自己依赖自己,一般是在代码编写错误的情况下出现,而且很容易发现。
两个对象的相互循环
从上文 OrderService 和 UserService 两个类的代码可以看出,在初始化 OrderService 类时,需要依赖 UserService,而 UserService 类未实例化,因此需要实例化 UserService 类,但是在初始化 UserService 类时 发现它又依赖 OrderService 类,因此就产生了循环依赖,依赖关系可以抽象成下图:
从上文 OrderService 和 UserService 两个类的代码可以看出,在初始化 OrderService 类时,需要依赖 UserService,而 UserService 类未实例化,因此需要实例化 UserService 类,但是在初始化 UserService 类时 发现它又依赖 OrderService 类,因此就产生了循环依赖,依赖关系可以抽象成下图:
@Component
public class OrderService {
private final UserService userService;
public OrderService(UserService userService){
this.userService = userService;
}
public User getUser(){
return userService.getUser();
}
}
@Component
public class UserService {
private final OrderService orderService;
public UserService(OrderService orderService){
this.orderService = orderService;
}
public Order getOrder(){
return orderService.getOrder();
}
}
多个对象的依赖成环:
@Component
public class OrderService {
private final UserService userService;
public OrderService(UserService userService){
this.userService = userService;
}
public User getUser(){
return userService.getUser();
}
}
@Component
public class UserService {
private final GoodsService goodsService;
public UserService(GoodsService goodsService){
this.goodsService = goodsService;
}
public Goods getGoodsService(){
return goodsService.getGoods();
}
}
@Component
public class GoodsService {
private final OrderService orderService;
public GoodsService(OrderService orderService){
this.orderService = orderService;
}
public Order getOrder(){
return orderService.getOrder();
}
}
这种循环依赖比较隐蔽,多个对象依赖,最终成环。
如何解决循环依赖
- 修改代码
既然循环依赖是代码编写带来的,最彻底的方案是把出现循环依赖的代码重构,但是,重构代码的范围可能不可控,因此,对于测试等存在一定的回归成本,这是一种代价稍微大点的方案。
不过,代码出现循环依赖,在一定意义上(不是绝对哦)预示了 code smell:为什么会存在循环依赖?代码抽象是否合理?代码设计是否违背了 SOLID 原则?
- 使用字段依赖注入
曾经很长一段时间(Spring 3.0 以前的版本),字段依赖是比较主流的一种编程方式,因为这种方式编写方便简洁,而且 Spring 也利用三层缓存解决了循环依赖问题,但后面因 Spring 不推荐字段依赖注入方式,并且在 github上也可以发现大部分的开源软件也不采用这种方式了,所以该方案也仅供参考不推荐,改造代码如下:
@Component
public class OrderService {
@Autowired
private UserService userService;
public User getUser(){
return userService.getUser();
}
}
@Component
public class UserService {
@Autowired
private OrderService orderService;
public Order getOrder(){
return orderService.getOrder();
}
}
- 使用 @Lazy 注解
@Lazy 是 spring 3.0 提供的一个注解,用来表示是否要延迟初始化 bean,首先看下 @Lazy 注解的源码:
/**
* Indicates whether a bean is to be lazily initialized.
*
* <p>May be used on any class directly or indirectly annotated with {@link
* org.springframework.stereotype.Component @Component} or on methods annotated with
* {@link Bean @Bean}.
*
* <p>If this annotation is not present on a {@code @Component} or {@code @Bean} definition,
* eager initialization will occur. If present and set to {@code true}, the {@code @Bean} or
* {@code @Component} will not be initialized until referenced by another bean or explicitly
* retrieved from the enclosing {@link org.springframework.beans.factory.BeanFactory
* BeanFactory}. If present and set to {@code false}, the bean will be instantiated on
* startup by bean factories that perform eager initialization of singletons.
*
* <p>If Lazy is present on a {@link Configuration @Configuration} class, this
* indicates that all {@code @Bean} methods within that {@code @Configuration}
* should be lazily initialized. If {@code @Lazy} is present and false on a {@code @Bean}
* method within a {@code @Lazy}-annotated {@code @Configuration} class, this indicates
* overriding the 'default lazy' behavior and that the bean should be eagerly initialized.
*
* <p>In addition to its role for component initialization, this annotation may also be placed
* on injection points marked with {@link org.springframework.beans.factory.annotation.Autowired}
* or {@link javax.inject.Inject}: In that context, it leads to the creation of a
* lazy-resolution proxy for all affected dependencies, as an alternative to using
* {@link org.springframework.beans.factory.ObjectFactory} or {@link javax.inject.Provider}.
* Please note that such a lazy-resolution proxy will always be injected; if the target
* dependency does not exist, you will only be able to find out through an exception on
* invocation. As a consequence, such an injection point results in unintuitive behavior
* for optional dependencies. For a programmatic equivalent, allowing for lazy references
* with more sophistication, consider {@link org.springframework.beans.factory.ObjectProvider}.
*
* @author Chris Beams
* @author Juergen Hoeller
* @since 3.0
* @see Primary
* @see Bean
* @see Configuration
* @see org.springframework.stereotype.Component
*/
@Target({ElementType.TYPE, ElementType.METHOD, ElementType.CONSTRUCTOR, ElementType.PARAMETER, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface Lazy {
/**
* Whether lazy initialization should occur.
*/
boolean value() default true;
}
从 @Lazy 注解的源码可以总结几点:
@Lazy 用来标识类是否需要延迟加载;
@Lazy 可以作用在类上、方法上、构造器上、方法参数上、成员变量中;
@Lazy 作用于类上时,通常与 @Component 及其衍生注解配合使用;
@Lazy 注解作用于方法上时,通常与 @Bean 注解配合使用;
因此,通过 @Lazy 解决构造器循环依赖的代码改造如下:
@Component
public class UserService {
private final OrderService orderService;
@Lazy
public UserService(OrderService orderService){
this.orderService = orderService;
}
// 或者
public UserService(@Lazy OrderService orderService){
this.orderService = orderService;
}
public Order getOrder(){
return orderService.getOrder();
}
}
@Lazy 原理剖析
本文使用的是 Springboot-2.7.0 启动,因此整体思路是:Springboot是如何启动 Spring IOC容器?如何加载 Bean?如何 处理 @Lazy注解?
源码查看足迹可以参考下面的类:
Springboot 启动类 main() 调用 org.springframework.boot.SpringApplication#run()
org.springframework.boot.SpringApplication#refreshContext()
org.springframework.context.support.AbstractApplicationContext#refresh()
org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#populateBean()
org.springframework.beans.factory.annotation.AutowiredAnnotationBeanPostProcessor#postProcessProperties()
org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#createBean
org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#doCreateBean
org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#createBeanInstance
org.springframework.beans.factory.support.ConstructorResolver#autowireConstructor
org.springframework.beans.factory.support.ConstructorResolver#resolvePreparedArguments
org.springframework.beans.factory.support.ConstructorResolver#resolveAutowiredArgument
org.springframework.beans.factory.config.AutowireCapableBeanFactory#resolveDependency()
这里摘取了处理构造器依赖的几个核心方法来解释@Lazy 如何解决循环依赖
UserService构造器注入OrderService是强依赖关系,因此会经过AbstractAutowireCapableBeanFactory#createBeanInstance()中关于构造器逻辑代码:
// org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#createBeanInstance
class AbstractAutowireCapableBeanFactory{
// Create a new instance for the specified bean, using an appropriate instantiation strategy: factory method, constructor autowiring, or simple instantiation.
// 使用适当的实例化策略为指定的 bean 创建一个新实例:工厂方法、构造函数自动装配或简单实例化。
protected BeanWrapper createBeanInstance(String beanName, RootBeanDefinition mbd, @Nullable Object[] args) {
// Candidate constructors for autowiring?
Constructor<?>[] ctors = determineConstructorsFromBeanPostProcessors(beanClass, beanName);
if (ctors != null || mbd.getResolvedAutowireMode() == AUTOWIRE_CONSTRUCTOR ||
mbd.hasConstructorArgumentValues() || !ObjectUtils.isEmpty(args)) {
return autowireConstructor(beanName, mbd, ctors, args);
}
}
}
在 autowireConstructor(beanName, mbd, ctors, args) 方法会调用 ConstructorResolver#resolvePreparedArguments(),再进入ConstructorResolver#resolveAutowiredArgument(), 再进入DefaultListableBeanFactory#resolveDependency(), resolveDependency()方法的 getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary 逻辑就是针对Lazy情况进行处理: 判断构造器参数是有@Lazy注解,有则通过buildLazyResolutionProxy 生成代理对象,无则直接返回beanName。而在buildLazyResolutionProxy()里会生成 一个TargetSource对象来和代理对象相关联。部分源码如下:
// org.springframework.beans.factory.support.DefaultListableBeanFactory#resolveDependency
public class DefaultListableBeanFactory{
public Object resolveDependency(DependencyDescriptor descriptor, @Nullable String requestingBeanName,
@Nullable Set<String> autowiredBeanNames, @Nullable TypeConverter typeConverter) throws BeansException {
// 此处省略部分代码
if (Optional.class == descriptor.getDependencyType()) {
} else {
// 处理 Lazy 逻辑
Object result = getAutowireCandidateResolver().getLazyResolutionProxyIfNecessary(
descriptor, requestingBeanName);
if (result == null) {
result = doResolveDependency(descriptor, requestingBeanName, autowiredBeanNames, typeConverter);
}
return result;
}
}
}
// org.springframework.context.annotation.ContextAnnotationAutowireCandidateResolver#getLazyResolutionProxyIfNecessary
public class ContextAnnotationAutowireCandidateResolver extends QualifierAnnotationAutowireCandidateResolver {
@Override
@Nullable
public Object getLazyResolutionProxyIfNecessary(DependencyDescriptor descriptor, @Nullable String beanName) {
// 判断注解是否有@Lazy,有则通过buildLazyResolutionProxy 生成代理对象,没有则直接返回beanName
return (isLazy(descriptor) ? buildLazyResolutionProxy(descriptor, beanName) : null);
}
protected boolean isLazy(DependencyDescriptor descriptor) {
for (Annotation ann : descriptor.getAnnotations()) {
Lazy lazy = AnnotationUtils.getAnnotation(ann, Lazy.class);
if (lazy != null && lazy.value()) {
return true;
}
}
MethodParameter methodParam = descriptor.getMethodParameter();
if (methodParam != null) {
Method method = methodParam.getMethod();
if (method == null || void.class == method.getReturnType()) {
Lazy lazy = AnnotationUtils.getAnnotation(methodParam.getAnnotatedElement(), Lazy.class);
if (lazy != null && lazy.value()) {
return true;
}
}
}
return false;
}
}
通过上面核心代码的解读,我们可以知道,构造器(参数)增加 @Lazy 注解后,Spring不会去初始化参数对应类的实例,而是返回它的一个代理对象,解决了循环依赖问题,逻辑可以抽象为下图:
尽管循环依赖的问题解决了,但是,UserService类 依赖的只是OrderService的一个代理对象。因此,我们自然会好奇:当调用orderService.getOrder()时,spring是如何找到 OrderService 的真实对象呢?
从上文知道,注入给UserService类的是一个代理,说起代理就不得不说起Spring AOP机制,它就是通过动态代理实现的(JDK动态代理 和 CGLib动态代理)。 因为OrderService并非接口,因此不能使用 JDK动态代理,只能通过 CGLib进行代理,CGLib源码如下:
// org.springframework.aop.framework.CglibAopProxy.DynamicAdvisedInterceptor#intercept
class CglibAopProxy implements AopProxy, Serializable {
private static class DynamicAdvisedInterceptor implements MethodInterceptor, Serializable {
public Object intercept(Object proxy, Method method, Object[] args, MethodProxy methodProxy) throws Throwable {
Object oldProxy = null;
boolean setProxyContext = false;
Object target = null;
TargetSource targetSource = this.advised.getTargetSource();
try {
if (this.advised.exposeProxy) {
// Make invocation available if necessary.
oldProxy = AopContext.setCurrentProxy(proxy);
setProxyContext = true;
}
// Get as late as possible to minimize the time we "own" the target, in case it comes from a pool...
// 获取被代理的对象
target = targetSource.getTarget();
Class<?> targetClass = (target != null ? target.getClass() : null);
List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);
Object retVal;
// Check whether we only have one InvokerInterceptor: that is,
// no real advice, but just reflective invocation of the target.
if (chain.isEmpty() && CglibMethodInvocation.isMethodProxyCompatible(method)) {
// We can skip creating a MethodInvocation: just invoke the target directly.
// Note that the final invoker must be an InvokerInterceptor, so we know
// it does nothing but a reflective operation on the target, and no hot
// swapping or fancy proxying.
Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);
// 通过反射调用被代理对象的方法
retVal = invokeMethod(target, method, argsToUse, methodProxy);
}
else {
// We need to create a method invocation...
retVal = new CglibMethodInvocation(proxy, target, method, args, targetClass, chain, methodProxy).proceed();
}
retVal = processReturnType(proxy, target, method, retVal);
return retVal;
}catch (Exception e){}
}
}
}
这里抽取了CGLib动态代理核心的3步:
// 此处的TargetSource 和 上文 buildLazyResolutionProxy() 构建的TargetSource 关联
1. TargetSource targetSource = this.advised.getTargetSource();
// 获取被代理的对象target
2. target = targetSource.getTarget();
// 反射调用被代理对象的方法
3. retVal = invokeMethod(target, method, argsToUse, methodProxy);
通过CGLib核心的3步解释了,Spring中代理类是如何与真实对象进行关联,因此,orderService关联到真实对象可以抽象成下图:
另外,我们通过3张 IDEA debugger 截图来佐证下:
总结
Spring构造器注入循环依赖有3种解决办法:重构代码、字段依赖注入、@Lazy注解。强烈推荐 @Lazy注解
@Lazy注解 解决思路是:初始化时注入代理对象,真实调用时使用Spring AOP动态代理去关联真实对象,然后通过反射完成调用。
@Lazy注解 加在构造器上,作用域为构造器所有参数,加在构造器某个参数上,作用域为该参数
@Lazy注解 作用在接口上,使用 JDK动态代理,作用在类上,使用 CGLib动态代理