Java四种线程池newCachedThreadPool,newFixedThreadPool,newScheduledThreadPool,newSingleThreadExecutor
1、new Thread的弊端
执行一个异步任务你还只是如下new Thread吗?
1 2 3 4 5 6 7 | new Thread( new Runnable() { @Override public void run() { // TODO Auto-generated method stub } }).start(); |
那你就out太多了,new Thread的弊端如下:
a. 每次new Thread新建对象性能差。
b. 线程缺乏统一管理,可能无限制新建线程,相互之间竞争,及可能占用过多系统资源导致死机或oom。
c. 缺乏更多功能,如定时执行、定期执行、线程中断。
相比new Thread,Java提供的四种线程池的好处在于:
a. 重用存在的线程,减少对象创建、消亡的开销,性能佳。
b. 可有效控制最大并发线程数,提高系统资源的使用率,同时避免过多资源竞争,避免堵塞。
c. 提供定时执行、定期执行、单线程、并发数控制等功能。
2、Java 线程池
Java通过Executors提供四种线程池,分别为:
newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
newScheduledThreadPool 创建一个周期线程池,支持定时及周期性任务执行。
newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。
(1). newCachedThreadPool
创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。示例代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ExecutorService cachedThreadPool = Executors.newCachedThreadPool(); for ( int i = 0 ; i < 10 ; i++) { final int index = i; try { Thread.sleep(index * 1000 ); } catch (InterruptedException e) { e.printStackTrace(); } cachedThreadPool.execute( new Runnable() { @Override public void run() { System.out.println(index); } }); } |
线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。
(2). newFixedThreadPool
创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。示例代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ExecutorService fixedThreadPool = Executors.newFixedThreadPool( 3 ); for ( int i = 0 ; i < 10 ; i++) { final int index = i; fixedThreadPool.execute( new Runnable() { @Override public void run() { try { System.out.println(index); Thread.sleep( 2000 ); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } }); } |
因为线程池大小为3,每个任务输出index后sleep 2秒,所以每两秒打印3个数字。
定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors()。可参考PreloadDataCache。
(3) newScheduledThreadPool
创建一个周期线程池,支持定时及周期性任务执行。延迟执行示例代码如下:
1 2 3 4 5 6 7 8 | ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool( 5 ); scheduledThreadPool.schedule( new Runnable() { @Override public void run() { System.out.println( "delay 3 seconds" ); } }, 3 , TimeUnit.SECONDS); |
表示延迟3秒执行。
定期执行示例代码如下:
1 2 3 4 5 6 7 | scheduledThreadPool.scheduleAtFixedRate( new Runnable() { @Override public void run() { System.out.println( "delay 1 seconds, and excute every 3 seconds" ); } }, 1 , 3 , TimeUnit.SECONDS); |
表示延迟1秒后每3秒执行一次。
ScheduledExecutorService比Timer更安全,功能更强大,后面会有一篇单独进行对比。
(4)、newSingleThreadExecutor
创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。示例代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor(); for ( int i = 0 ; i < 10 ; i++) { final int index = i; singleThreadExecutor.execute( new Runnable() { @Override public void run() { try { System.out.println(index); Thread.sleep( 2000 ); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } }); } |
结果依次输出,相当于顺序执行各个任务。
现行大多数GUI程序都是单线程的。Android中单线程可用于数据库操作,文件操作,应用批量安装,应用批量删除等不适合并发但可能IO阻塞性及影响UI线程响应的操作。
线程池的作用:
线程池作用就是限制系统中执行线程的数量。
根 据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果;少了浪费了系统资源,多了造成系统拥挤效率不高。用线程池控制线程数量,其他线程排 队等候。一个任务执行完毕,再从队列的中取最前面的任务开始执行。若队列中没有等待进程,线程池的这一资源处于等待。当一个新任务需要运行时,如果线程池 中有等待的工作线程,就可以开始运行了;否则进入等待队列。
为什么要用线程池:
1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。
Java里面线程池的顶级接口是Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是ExecutorService。
比较重要的几个类:
ExecutorService |
真正的线程池接口。 |
ScheduledExecutorService |
能和Timer/TimerTask类似,解决那些需要任务重复执行的问题。 |
ThreadPoolExecutor |
ExecutorService的默认实现。 |
ScheduledThreadPoolExecutor |
继承ThreadPoolExecutor的ScheduledExecutorService接口实现,周期性任务调度的类实现。 |
要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在Executors类里面提供了一些静态工厂,生成一些常用的线程池。
1. newSingleThreadExecutor
创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
2.newFixedThreadPool
创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
3. newCachedThreadPool
创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,
那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
4.newScheduledThreadPool
创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
无论创建那种线程池 必须要调用ThreadPoolExecutor
线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为:
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,
long keepAliveTime, TimeUnit unit,
BlockingQueue workQueue,
RejectedExecutionHandler handler)
corePoolSize: 线程池维护线程的最少数量
maximumPoolSize:线程池维护线程的最大数量
keepAliveTime: 线程池维护线程所允许的空闲时间
unit: 线程池维护线程所允许的空闲时间的单位
workQueue: 线程池所使用的缓冲队列
handler: 线程池对拒绝任务的处理策略
一个任务通过 execute(Runnable)方法被添加到线程池,任务就是一个 Runnable类型的对象,任务的执行方法就是 Runnable类型对象的run()方法。
当一个任务通过execute(Runnable)方法欲添加到线程池时:
如果此时线程池中的数量小于corePoolSize,即使线程池中的线程都处于空闲状态,也要创建新的线程来处理被添加的任务。
如果此时线程池中的数量等于 corePoolSize,但是缓冲队列 workQueue未满,那么任务被放入缓冲队列。
如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量小于maximumPoolSize,建新的线程来处理被添加的任务。
如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量等于maximumPoolSize,那么通过 handler所指定的策略来处理此任务。
也就是:处理任务的优先级为:
核心线程corePoolSize、任务队列workQueue、最大线程maximumPoolSize,如果三者都满了,使用handler处理被拒绝的任务。
当线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止。这样,线程池可以动态的调整池中的线程数。
unit可选的参数为java.util.concurrent.TimeUnit中的几个静态属性:
NANOSECONDS、MICROSECONDS、MILLISECONDS、SECONDS。
workQueue我常用的是:java.util.concurrent.ArrayBlockingQueue
handler有四个选择:
ThreadPoolExecutor.AbortPolicy()
抛出java.util.concurrent.RejectedExecutionException异常
ThreadPoolExecutor.CallerRunsPolicy()
重试添加当前的任务,他会自动重复调用execute()方法
ThreadPoolExecutor.DiscardOldestPolicy()
抛弃旧的任务
ThreadPoolExecutor.DiscardPolicy()
抛弃当前的任务
当然也可以根据应用场景实现RejectedExecutionHandler接口,自定义饱和策略,如记录日志或持久化存储不能处理的任务。
Executor 可 以 创 建 3 种 类 型 的 ThreadPoolExecutor 线 程 池:
1. FixedThreadPool
创建固定长度的线程池,每次提交任务创建一个线程,直到达到线程池的最大数量,线程池的大小不再变化。
这个线程池可以创建固定线程数的线程池。特点就是可以重用固定数量线程的线程池。它的构造源码如下:
1
2
3
4
5
|
public static ExecutorService newFixedThreadPool( int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } |
- FixedThreadPool的corePoolSize和maxiumPoolSize都被设置为创建FixedThreadPool时指定的参数nThreads。
- 0L则表示当线程池中的线程数量操作核心线程的数量时,多余的线程将被立即停止
- 最后一个参数表示FixedThreadPool使用了无界队列LinkedBlockingQueue作为线程池的做工队列,由于是无界的,当线程池的线程数达到corePoolSize后,新任务将在无界队列中等待,因此线程池的线程数量不会超过corePoolSize,同时maxiumPoolSize也就变成了一个无效的参数,并且运行中的线程池并不会拒绝任务。
FixedThreadPool运行图如下
执行过程如下:
1.如果当前工作中的线程数量少于corePool的数量,就创建新的线程来执行任务。
2.当线程池的工作中的线程数量达到了corePool,则将任务加入LinkedBlockingQueue。
3.线程执行完1中的任务后会从队列中去任务。
注意LinkedBlockingQueue是无界队列,所以可以一直添加新任务到线程池。
2. SingleThreadExecutor
SingleThreadExecutor是使用单个worker线程的Executor。特点是使用单个工作线程执行任务。它的构造源码如下:
1
2
3
4
5
6
|
public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService ( new ThreadPoolExecutor( 1 , 1 , 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } |
执行过程如下:
1.如果当前工作中的线程数量少于corePool的数量,就创建一个新的线程来执行任务。
2.当线程池的工作中的线程数量达到了corePool,则将任务加入LinkedBlockingQueue。
3.线程执行完1中的任务后会从队列中去任务。
注意:由于在线程池中只有一个工作线程,所以任务可以按照添加顺序执行。
3. CachedThreadPool
CachedThreadPool是一个”无限“容量的线程池,它会根据需要创建新线程。特点是可以根据需要来创建新的线程执行任务,没有特定的corePool。下面是它的构造方法:
1
2
3
4
5
|
public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor( 0 , Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); } |
1.首先执行SynchronousQueue.offer(Runnable task)。如果在当前的线程池中有空闲的线程正在执行SynchronousQueue.poll(),那么主线程执行的offer操作与空闲线程执行的poll操作配对成功,主线程把任务交给空闲线程执行。,execute()方法执行成功,否则执行步骤2
2.当线程池为空(初始maximumPool为空)或没有空闲线程时,配对失败,将没有线程执行SynchronousQueue.poll操作。这种情况下,线程池会创建一个新的线程执行任务。
3.在创建完新的线程以后,将会执行poll操作。当步骤2的线程执行完成后,将等待60秒,如果此时主线程提交了一个新任务,那么这个空闲线程将执行新任务,否则被回收。因此长时间不提交任务的CachedThreadPool不会占用系统资源。
SynchronousQueue是一个不存储元素阻塞队列,每次要进行offer操作时必须等待poll操作,否则不能继续添加元素。
最后 来个各种阻塞队列的说明和比较:
Java并发包中的阻塞队列一共7个,当然他们都是线程安全的。
ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列。
LinkedBlockingQueue:一个由链表结构组成的有界阻塞队列。
PriorityBlockingQueue:一个支持优先级排序的无界阻塞队列。
DealyQueue:一个使用优先级队列实现的无界阻塞队列。
SynchronousQueue:一个不存储元素的阻塞队列。
LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。
LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。