会员
周边
众包
新闻
博问
闪存
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
Python少年
联系
管理
订阅
2018年10月16日
ID3决策树
摘要: 决策树 优点:计算复杂度不高,输出结果易于理解,对中间值的缺少不敏感,可以处理不相关特征数据 缺点:过拟合 决策树的构造 熵:混乱程度,信息的期望值 其中p(xi)是选择分类的概率 熵就是计算所有类别所有可能值包含的信息期望值,公式如下: (公式2) 构造基本思路 信息增益 = 初始香农熵-新计算得
阅读全文
posted @ 2018-10-16 20:56 Python少年
阅读(397)
评论(0)
推荐(0)
编辑