halcon 双目相机标定
1.halcon-轮廓拟合圆fit_circle_contour_xld2.Halcon 标定例程(calibration-adjust_mosaic_images.hdev)3.Halcon 相机外部参数(camera_calibration_external.hdev)4.halcon 标定5.Halcon 相机内部参数(camera_calibration_internal.hdev)6.halcon 标定算子汇总7.halcon 拼接参考
8.halcon 双目相机标定
9.HALCON 杂记10.dump_window & dump_window_image 区别11.拟合——直线12.halcon崩溃,未及时保存文件临时存储路径13.halcon-——显示颜色对照表14.矩阵基本操作15.通过高斯的导数获取法向量16.halcon ——从几个不同照明的图像重建表面17.脱离halcon环境运行18.Halcon 一维测量/1D-Measuring19.Halcon——矩阵/Matrix20.dev_set_lut显示效果21.基础设置之——dev_set_check22.基础设置之——dev_open_file_dialog23.基础设置之——dev_open_dialog24.基础设置之——dev_disp_text25.基础操作之——生成一张背景图像26.基础设置之——dev_open_tool27.基本设置之——算术运算28.基础设置之——字符显示格式设置29.基础设置之——条件判断(一)30.基础操作之——tuple基本操作31.基本操作之——位运算32.基本操作之——正弦函数绘制33.基本操作之——多维空间欧几里得距离距离计算及标量积计算34.基本操作之——集合基本操作35.基本操作之——字符截取操作36.基本操作之——Unicode编码37.基本操作之——正则表达式38.基本操作之——字典39.基础设置之——条件判断(二)40.基本操作之——tuple类型41.基本操作之——tuple值分布范围获取42.基本操作之——tuple增删查改操作43.基本操作之——Object比较44.基本操作之——Object插入45.基本操作之——Object差异46.基本操作之——Object移除操作47.基本操作之——Object替换48.分类器——高斯混合模型/Gaussian-Mixture-Models(GMM)之图像分割49.分类器——高斯混合模型之水果分类50.分类器——高斯混合模型之缺陷检测(纹理缺陷检测)51.基本操作之——图像纹理处理texture_laws52.分类器——高斯混合模型之查找表分类器(保险丝分类)53.模版匹配——set_shape_model_param54.模板匹配——set_shape_model_clutter55.模板匹配——金字塔图像计算gen_gauss_pyramid56.模板匹配——determine_shape_model_params57.模板匹配——create_shape_model58.模版匹配——inspect_shape_model* Application program to demonstrate the calibration of * a binocular stereo system using the operators * find_caltab, find_marks_and_pose, and binocular_calibration. * * As an alternative, a calibration data model could be used. * Please refer to the example program * examples/solution_guide/3d_vision/stereo_calibration.hdev. * * We have a stereo setup of two cameras ('camera1 is left of camera2'). * Both cameras will be calibrated by a couple of images of * a 30mm calibration plate. An image pair will be rectified * to epipolar images and the epipolar constraint will be checked. * --------------------------------------------------------- * Set the image path ImgPath := 'stereo/board/' * Read the first images to get their size Index := 1 read_image (ImageL, ImgPath + 'calib_l_' + Index$'02d') read_image (ImageR, ImgPath + 'calib_r_' + Index$'02d') * Reopen the windows with an appropriate size dev_close_window () dev_update_off () get_image_size (ImageL, WidthL, HeightL) dev_open_window (0, 0, WidthL, HeightL, 'black', WindowHandle1) dev_set_draw ('margin') dev_set_color ('green') set_display_font (WindowHandle1, 14, 'mono', 'true', 'false') get_image_size (ImageR, WidthR, HeightR) dev_open_window (0, WidthL + 12, WidthL, HeightL, 'black', WindowHandle2) dev_set_draw ('margin') dev_set_color ('green') * Read the model calibration points. CaltabFile := 'caltab_30mm.descr' caltab_points (CaltabFile, X, Y, Z) * Set the initial values for the internal camera parameters gen_cam_par_area_scan_division (0.0125, 0, 1.48e-5, 1.48e-5, WidthL / 2.0, HeightL / 2.0, WidthL, HeightL, StartCamParL) StartCamParR := StartCamParL * Parameter settings for find_caltab and find_marks_and_pose SizeGauss := 3 MarkThresh := 120 MinDiamMarks := 5 StartThresh := 128 DeltaThresh := 10 MinThresh := 18 Alpha := 0.9 MinContLength := 15 MaxDiamMarks := 100 * Create the tuples in which the image coordinates of the * calibration marks and the initial poses will be accumulated RowsL := [] ColsL := [] StartPosesL := [] RowsR := [] ColsR := [] StartPosesR := [] * Start the loop over the calibration images for Index := 1 to 15 by 1 * Read the calibration images read_image (ImageL, ImgPath + 'calib_l_' + Index$'02d') read_image (ImageR, ImgPath + 'calib_r_' + Index$'02d') * Search for the calibration plate find_caltab (ImageL, CaltabL, CaltabFile, SizeGauss, MarkThresh, MinDiamMarks) find_caltab (ImageR, CaltabR, CaltabFile, SizeGauss, MarkThresh, MinDiamMarks) * Display calibration plate regions dev_set_window (WindowHandle1) dev_display (ImageL) dev_display (CaltabL) dev_set_window (WindowHandle2) dev_display (ImageR) dev_display (CaltabR) * Extraction of marks and pose as well as visualization of the * results for the second image. find_marks_and_pose (ImageL, CaltabL, CaltabFile, StartCamParL, StartThresh, DeltaThresh, MinThresh, Alpha, MinContLength, MaxDiamMarks, RCoordL, CCoordL, StartPoseL) disp_caltab (WindowHandle1, CaltabFile, StartCamParL, StartPoseL, 1) * Extraction of marks and pose as well as visualization of the * results for the second image. find_marks_and_pose (ImageR, CaltabR, CaltabFile, StartCamParR, StartThresh, DeltaThresh, MinThresh, Alpha, MinContLength, MaxDiamMarks, RCoordR, CCoordR, StartPoseR) disp_caltab (WindowHandle2, CaltabFile, StartCamParR, StartPoseR, 1) * Accumulate the image coordinates of the calibration marks * as well as the estimated initial poses for all stereo pairs, * where the poses has been estimated consistently. RowsL := [RowsL,RCoordL] ColsL := [ColsL,CCoordL] StartPosesL := [StartPosesL,StartPoseL] RowsR := [RowsR,RCoordR] ColsR := [ColsR,CCoordR] StartPosesR := [StartPosesR,StartPoseR] endfor * Perform the actual calibration binocular_calibration (X, Y, Z, RowsL, ColsL, RowsR, ColsR, StartCamParL, StartCamParR, StartPosesL, StartPosesR, 'all', CamParamL, CamParamR, NFinalPoseL, NFinalPoseR, cLPcR, Errors) * If required, save the results to disk: * write_cam_par (CamParamL, 'cam_left-125.dat') * write_cam_par (CamParamR, 'cam_right-125.dat') * write_pose (cLPcR, 'pos_right2left.dat') * Generate the rectification maps gen_binocular_rectification_map (MapL, MapR, CamParamL, CamParamR, cLPcR, 1, 'viewing_direction', 'bilinear', RectCamParL, RectCamParR, CamPoseRectL, CamPoseRectR, RectLPosRectR) * Read in a stereo image pair, acquired with the stereo camera system, * which has been calibrated, just now. read_image (ImageL, ImgPath + 'calib_l_01') read_image (ImageR, ImgPath + 'calib_r_01') * Rectify the stereo images and display them map_image (ImageL, MapL, ImageRectifiedL) map_image (ImageR, MapR, ImageRectifiedR) * Check the epipolar constraint on the rectified images, * (the differences of the features' row coordinates should be small) * and visualize the result (including some corresponding epipolar lines) check_epipolar_constraint (ImageRectifiedL, ImageRectifiedR, RectCamParL, RectCamParR, WindowHandle1, WindowHandle2, CaltabFile, EpipolarError)
------------------------------------
承接
**视觉检测软件开发及调试
**工业软件开发
**上位机软件开发
wechat:luoran2024
qq:565934058
email:taoyuansu@qq.com
海量教育资源及影视资源下载
微信公众号:EFun科技
------------------------------------
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!